IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v229y2024ics096014812400822x.html
   My bibliography  Save this article

A novel dual condensers heat pipe photovoltaic/thermal (PV/T) system: Numerical dynamic modelling and effect factors analysis in dual-function operation mode

Author

Listed:
  • Ji, Yasheng
  • Yu, Min
  • Wang, Lin
  • Lu, Lin
  • Zhou, Jinzhi

Abstract

This paper presents a dual condensers heat pipe PV/T system with multiple operating modes, including hot water, space heating, and dual-function. To exploiting the system's potential of energy supply, this paper proposes a dynamic model of the system in dual-function mode on the basis of the verified dynamic heat transfer model and condenser distributed parameter model. Several effect factors on the system performance have been analyzed, including water tank capacity, air-cooled condenser area and the dual condensers installation height difference. The simulated results show that the above parameters have little effect on the system's total thermal efficiency but a significant effect on single condenser heat gain distribution. When the water tank capacity increases from 100 L to 200 L, the thermal efficiency of the water-cooled condenser increases from 10.68 % to 17.82 %, while the air-cooled condenser's decreases from 48.12 % to 40.72 %. As the air-cooled condenser area is changed from model 1 to 4, the total efficiency increase from 58.13 % to 71.41 %. The system's thermal efficiency falls from 58.66 % to 47.50 % and its overall efficiency falls from 71.41 % to 60.40 % when the height difference rises from 0 m to 0.7 m.

Suggested Citation

  • Ji, Yasheng & Yu, Min & Wang, Lin & Lu, Lin & Zhou, Jinzhi, 2024. "A novel dual condensers heat pipe photovoltaic/thermal (PV/T) system: Numerical dynamic modelling and effect factors analysis in dual-function operation mode," Renewable Energy, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:renene:v:229:y:2024:i:c:s096014812400822x
    DOI: 10.1016/j.renene.2024.120754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812400822X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Hongbing & Zhang, Lei & Jie, Pengfei & Xiong, Yaxuan & Xu, Peng & Zhai, Huixing, 2017. "Performance study of heat-pipe solar photovoltaic/thermal heat pump system," Applied Energy, Elsevier, vol. 190(C), pages 960-980.
    2. Zhang, Tao & Zheng, Wenjie & Wang, Liuya & Yan, Zhiwei & Hu, Mingke, 2021. "Experimental study and numerical validation on the effect of inclination angle to the thermal performance of solar heat pipe photovoltaic/thermal system," Energy, Elsevier, vol. 223(C).
    3. Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
    4. Kartal, Mustafa Tevfik, 2022. "The role of consumption of energy, fossil sources, nuclear energy, and renewable energy on environmental degradation in top-five carbon producing countries," Renewable Energy, Elsevier, vol. 184(C), pages 871-880.
    5. Ji, Yasheng & Zhou, Jinzhi & Zhao, Kaiming & Zhang, Nan & Lu, Lin & Yuan, Yanping, 2023. "A novel dual condensers heat pipe photovoltaic/thermal (PV/T) system under different climate conditions: Electrical and thermal assessment," Energy, Elsevier, vol. 278(PB).
    6. Al-Waeli, Ali H.A. & Sopian, K. & Kazem, Hussein A. & Chaichan, Miqdam T., 2017. "Photovoltaic/Thermal (PV/T) systems: Status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 109-130.
    7. Ji, Yasheng & Yuan, Yanping & Zhao, Kaiming & Ji, Wenhui & Zhou, Jinzhi, 2023. "Numerical study on the heat transfer limits of a novel dual-condenser heat pipe integrated with photovoltaic/thermal (PV/T) system," Renewable Energy, Elsevier, vol. 218(C).
    8. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    9. Ji, Yasheng & Zhou, Jinzhi & Yu, Min & Zhong, Wei & Yuan, Yanping, 2023. "A novel multi-function “Y-shape” heat pipe photovoltaic/thermal (PV/T) system: Experimental study on the performance of hot water supply and space heating," Renewable Energy, Elsevier, vol. 218(C).
    10. Güney, Taner, 2022. "Solar energy, governance and CO2 emissions," Renewable Energy, Elsevier, vol. 184(C), pages 791-798.
    11. Yu, Min & Chen, Fucheng & Zheng, Siming & Zhou, Jinzhi & Zhao, Xudong & Wang, Zhangyuan & Li, Guiqiang & Li, Jing & Fan, Yi & Ji, Jie & Diallo, Theirno M.O. & Hardy, David, 2019. "Experimental Investigation of a Novel Solar Micro-Channel Loop-Heat-Pipe Photovoltaic/Thermal (MC-LHP-PV/T) System for Heat and Power Generation," Applied Energy, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    2. Chen, Haifei & Li, Guiqiang & Zhong, Yang & Wang, Yunjie & Cai, Baorui & Yang, Jie & Badiei, Ali & Zhang, Yang, 2021. "Exergy analysis of a high concentration photovoltaic and thermal system for comprehensive use of heat and electricity," Energy, Elsevier, vol. 225(C).
    3. Li, Jinping & Niu, Mengyao & Liu, Xiaomin & Novakovic, Vojislav & Dai, Jingbo & Huang, Juanjuan & Kong, Lingxuan & Zhang, Dong & Li, Xiaoxia, 2023. "Experiment study on heat transfer enhancement of micro heat pipe PV/T by Reynolds number improvement," Energy, Elsevier, vol. 282(C).
    4. Elsabahy, Mohamed M. & Emam, Mohamed & Sekiguchi, Hidetoshi & Ahmed, Mahmoud, 2024. "Performance mapping of silicon-based solar cell for efficient power generation and thermal utilization: Effect of cell encapsulation, temperature coefficient, and reference efficiency," Applied Energy, Elsevier, vol. 356(C).
    5. Ji, Yasheng & Yuan, Yanping & Zhao, Kaiming & Ji, Wenhui & Zhou, Jinzhi, 2023. "Numerical study on the heat transfer limits of a novel dual-condenser heat pipe integrated with photovoltaic/thermal (PV/T) system," Renewable Energy, Elsevier, vol. 218(C).
    6. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    7. Li, Zhaomeng & Ji, Jie & Li, Jing & Zhao, Xudong & Cui, Yu & Song, Zhiying & Wen, Xin & Yao, TingTing, 2022. "Experimental investigation and annual performance mathematical-prediction on a novel LT-PV/T system using spiral-descent concentric copper tube heat exchanger as the condenser for large-scale applicat," Renewable Energy, Elsevier, vol. 187(C), pages 257-270.
    8. Li, Rui & Li, Jinping & Zhu, Junjie & Liu, Xiaomin & Novakovic, Vojislav, 2023. "A numerical and experimental study on a novel micro heat pipe PV/T system," Energy, Elsevier, vol. 282(C).
    9. Li, Rui & Zhai, Panpan & Li, Jinping & Liu, Ye & Novakovic, Vojislavi, 2024. "Performance analysis of micro heat pipe PV/T within and outside the greenhouse in northwest China," Energy, Elsevier, vol. 302(C).
    10. Yazdanifard, Farideh & Ameri, Mehran, 2018. "Exergetic advancement of photovoltaic/thermal systems (PV/T): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 529-553.
    11. Abbas, Sajid & Yuan, Yanping & Zhou, Jinzhi & Hassan, Atazaz & Yu, Min & Yasheng, Ji, 2022. "Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 187(C), pages 522-536.
    12. Chemisana, D. & Fernandez, E.F. & Riverola, A. & Moreno, A., 2018. "Fluid-based spectrally selective filters for direct immersed PVT solar systems in building applications," Renewable Energy, Elsevier, vol. 123(C), pages 263-272.
    13. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    14. Muhammad Usman & Atif Jahanger & Magdalena Radulescu & Daniel Balsalobre-Lorente, 2022. "Do Nuclear Energy, Renewable Energy, and Environmental-Related Technologies Asymmetrically Reduce Ecological Footprint? Evidence from Pakistan," Energies, MDPI, vol. 15(9), pages 1-24, May.
    15. Zhang, Jiekuan, 2023. "Emissions trading scheme and energy consumption and output structure: Evidence from China," Renewable Energy, Elsevier, vol. 219(P1).
    16. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    17. Obalanlege, Mustapha A. & Mahmoudi, Yasser & Douglas, Roy & Bailie, David & Davidson, John, 2020. "Experimental assessment of short cycling in a hybrid photovoltaic-thermal heat pump system," Applied Energy, Elsevier, vol. 268(C).
    18. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    19. Maleki, Yaser & Pourfayaz, Fathollah & Mehrpooya, Mehdi, 2022. "Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials," Renewable Energy, Elsevier, vol. 201(P2), pages 202-215.
    20. Pata, Ugur Korkut & Kartal, Mustafa Tevfik & Erdogan, Sinan & Sarkodie, Samuel Asumadu, 2023. "The role of renewable and nuclear energy R&D expenditures and income on environmental quality in Germany: Scrutinizing the EKC and LCC hypotheses with smooth structural changes," Applied Energy, Elsevier, vol. 342(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:229:y:2024:i:c:s096014812400822x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.