IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224013288.html
   My bibliography  Save this article

Analysis of night behavior and negative running for PVT system

Author

Listed:
  • Song, Zhiying
  • Zhang, Yuzhe
  • Ji, Jie
  • Wang, Chuyao

Abstract

High absorption of PV benefits heat collection in the daytime, but the heat loss to the space/environment because of its high emissivity also should be noticed. Although there are many papers investigating PVT, few of them cover the night behavior and negative running during late afternoon. This paper supplements detailed studies on related content to draw people's attention to the night and late-afternoon operation that helps better strategy establishment and less heat loss. From experiments, the clouds help hinder the PV radiant heat exchange with space. Under clear night, the PV bottom temperature can be 6.88 °C lower than air temperature and the water tank's bottom temperature drops 2.8 °C. Because of the fluid viscosity, no apparent temperature stratification and flow occur in the PVT water pipe, causing even PV temperature. The higher the water temperature, the easier the negative running occurs during late afternoon, although the irradiation is still high at 521W/m2. Heat loss power and energy are −199W and 1791 KJ from 15:10 to 17:40. Based on different regressed linear correlations of different PVT systems, the effect of water temperature, irradiation, and ambient temperature on the negative performance is also comparatively studied.

Suggested Citation

  • Song, Zhiying & Zhang, Yuzhe & Ji, Jie & Wang, Chuyao, 2024. "Analysis of night behavior and negative running for PVT system," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224013288
    DOI: 10.1016/j.energy.2024.131555
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224013288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224013288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.