IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v148y2018icp1153-1161.html
   My bibliography  Save this article

Comparison study of the performance of two kinds of photovoltaic/thermal(PV/T) systems and a PV module at high ambient temperature

Author

Listed:
  • Yuan, Weiqi
  • Ji, Jie
  • Li, Zhaomeng
  • Zhou, Fan
  • Ren, Xiao
  • Zhao, Xudong
  • Liu, Shuli

Abstract

The power output of a PV system decreases with the operating temperature rising especially in summer. Using the photovoltaic/thermal(PV/T) can help cooling down the operating temperature of the cells. However, there are few studies comparing the performance of different PV/T systems and the PV module at high ambient temperature. In this study, a series of experiments were conducted to compare the performance of the water-pipe-based PV/T, the PV/T with micro-channel heat pipe array(MHPA) and the conventional PV module at high ambient temperature. The results showed that the average cell temperature of the water-pipe-based PV/T, the PV/T with MHPA and the PV module rose in the morning and fell in the afternoon. The temperature of the three systems could be up to 70 °C, 90 °C and 100 °C respectively, while the electrical efficiency of the three systems decreased with the increment in the temperature of the PV cells and ranged from 11.2% to 10%, 9.6%–7.7% and 8.6 to 7.0% respectively. It means that both the water-pipe-based PV/T and the PV/T with MHPA could improve the performance of PV cells. However, in this study the water-pipe-based PV/T had better performance than the PV/T with MHPA.

Suggested Citation

  • Yuan, Weiqi & Ji, Jie & Li, Zhaomeng & Zhou, Fan & Ren, Xiao & Zhao, Xudong & Liu, Shuli, 2018. "Comparison study of the performance of two kinds of photovoltaic/thermal(PV/T) systems and a PV module at high ambient temperature," Energy, Elsevier, vol. 148(C), pages 1153-1161.
  • Handle: RePEc:eee:energy:v:148:y:2018:i:c:p:1153-1161
    DOI: 10.1016/j.energy.2018.01.121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218301476
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jin & Xuan, Yimin & Yang, Lili, 2014. "Performance estimation of photovoltaic–thermoelectric hybrid systems," Energy, Elsevier, vol. 78(C), pages 895-903.
    2. Guo, Chao & Ji, Jie & Sun, Wei & Ma, Jinwei & He, Wei & Wang, Yanqiu, 2015. "Numerical simulation and experimental validation of tri-functional photovoltaic/thermal solar collector," Energy, Elsevier, vol. 87(C), pages 470-480.
    3. Zhou, Jinzhi & Zhao, Xudong & Ma, Xiaoli & Qiu, Zhongzhu & Ji, Jie & Du, Zhenyu & Yu, Min, 2016. "Experimental investigation of a solar driven direct-expansion heat pump system employing the novel PV/micro-channels-evaporator modules," Applied Energy, Elsevier, vol. 178(C), pages 484-495.
    4. Kumar, Anil & Baredar, Prashant & Qureshi, Uzma, 2015. "Historical and recent development of photovoltaic thermal (PVT) technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1428-1436.
    5. Bhattarai, Sujala & Kafle, Gopi Krishna & Euh, Seung-Hee & Oh, Jae-Heun & Kim, Dae Hyun, 2013. "Comparative study of photovoltaic and thermal solar systems with different storage capacities: Performance evaluation and economic analysis," Energy, Elsevier, vol. 61(C), pages 272-282.
    6. Chaudhry, Hassam Nasarullah & Hughes, Ben Richard & Ghani, Saud Abdul, 2012. "A review of heat pipe systems for heat recovery and renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2249-2259.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    2. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Comparative study on dual-source direct-expansion heat pumps based on different composite concentrating photovoltaic/fin evaporators," Applied Energy, Elsevier, vol. 306(PB).
    3. Huang, Xiaona & Wang, Qiliang & Yang, Honglun & Zhong, Shuai & Jiao, Dongsheng & Zhang, Kaili & Li, Mujun & Pei, Gang, 2019. "Theoretical and experimental studies of impacts of heat shields on heat pipe evacuated tube solar collector," Renewable Energy, Elsevier, vol. 138(C), pages 999-1009.
    4. Annamaria Buonomano & Francesco Calise & Maria Vicidomini, 2016. "Design, Simulation and Experimental Investigation of a Solar System Based on PV Panels and PVT Collectors," Energies, MDPI, vol. 9(7), pages 1-17, June.
    5. Guo, Jinyi & Lin, Simao & Bilbao, Jose I. & White, Stephen D. & Sproul, Alistair B., 2017. "A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1-14.
    6. Chen, Hongbing & Zhang, Lei & Jie, Pengfei & Xiong, Yaxuan & Xu, Peng & Zhai, Huixing, 2017. "Performance study of heat-pipe solar photovoltaic/thermal heat pump system," Applied Energy, Elsevier, vol. 190(C), pages 960-980.
    7. Ren, Xiao & Yu, Min & Zhao, Xudong & Li, Jing & Zheng, Siming & Chen, Fucheng & Wang, Zhangyuan & Zhou, Jinzhi & Pei, Gang & Ji, Jie, 2020. "Assessment of the cost reduction potential of a novel loop-heat-pipe solar photovoltaic/thermal system by employing the distributed parameter model," Energy, Elsevier, vol. 190(C).
    8. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    9. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    10. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    11. Thierno M. O. Diallo & Min Yu & Jinzhi Zhou & Xudong Zhao & Jie Ji & David Hardy, 2018. "Analytical Investigation of the Heat-Transfer Limits of a Novel Solar Loop-Heat Pipe Employing a Mini-Channel Evaporator," Energies, MDPI, vol. 11(1), pages 1-18, January.
    12. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Shao, Nina & Ma, Liangdong & Zhang, Jili, 2020. "Experimental investigation on the performance of direct-expansion roof-PV/T heat pump system," Energy, Elsevier, vol. 195(C).
    14. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Fine, Jamie P. & Dworkin, Seth B. & Friedman, Jacob, 2019. "A methodology for predicting hybrid solar panel performance in different operating modes," Renewable Energy, Elsevier, vol. 130(C), pages 1198-1206.
    16. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    17. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    18. Yu, Min & Diallo, Thierno M.O. & Zhao, Xudong & Zhou, Jinzhi & Du, Zhenyu & Ji, Jie & Cheng, Yuanda, 2018. "Analytical study of impact of the wick’s fractal parameters on the heat transfer capacity of a novel micro-channel loop heat pipe," Energy, Elsevier, vol. 158(C), pages 746-759.
    19. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.
    20. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:148:y:2018:i:c:p:1153-1161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.