IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v219y2021ics0360544220327377.html
   My bibliography  Save this article

Reversible photochromic energy storage polyurea microcapsules via in-situ polymerization

Author

Listed:
  • Sun, Shaofeng
  • Gao, Yan
  • Han, Na
  • Zhang, XingXiang
  • Li, Wei

Abstract

In this study, reversible photochromic polyurea (PU) microcapsules had been innovatively designed and prepared by in-situ polymerization successfully, which exhibited good latent heat storage and release properties. For the microcapsules, butyl stearate containing photochromic dye (spirooxazine) was used as the core material and PU as the shell material. The surface morphology, melt crystallization, thermal cycling durability, thermal stability and mechanical properties of PU microcapsules were systematically investigated with field emission scanning electron microscope (FE-SEM), different scanning calorimetry (DSC), thermogravimetric (TG) and dynamic mechanical analysis (DMA). And the light-to-thermal conversion performance was studied under sun simulation system. The results showed that the microcapsules synthesized with F2850, a new lipophilic amine, had better morphologies and uniform particle size distribution. When the mass ratio of isophorone diisocyanate (IPDI) to F2850 was 1:2, the surface of the microcapsules was smooth and compact thus resulting in the microcapsules with the highest mechanical strength. In addition, the PU microcapsules exhibited high energy storage efficiency, excellent thermal stability and thermal cyclic durability. Finally, the reversible photochromic microcapsules also presented prominent light-to-thermal conversion properties. What’s more, the temperature of the reversible photochromic microcapsules was nearly 4.9 °C higher than that of microcapsules at the same irradiation time.

Suggested Citation

  • Sun, Shaofeng & Gao, Yan & Han, Na & Zhang, XingXiang & Li, Wei, 2021. "Reversible photochromic energy storage polyurea microcapsules via in-situ polymerization," Energy, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220327377
    DOI: 10.1016/j.energy.2020.119630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220327377
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geng, Xiaoye & Li, Wei & Wang, Yu & Lu, Jiangwei & Wang, Jianping & Wang, Ning & Li, Jianjie & Zhang, Xingxiang, 2018. "Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing," Applied Energy, Elsevier, vol. 217(C), pages 281-294.
    2. Cao, Vinh Duy & Bui, Tri Quang & Kjøniksen, Anna-Lena, 2019. "Thermal analysis of multi-layer walls containing geopolymer concrete and phase change materials for building applications," Energy, Elsevier, vol. 186(C).
    3. Kong, Minsuk & Alvarado, Jorge L. & Thies, Curt & Morefield, Sean & Marsh, Charles P., 2017. "Field evaluation of microencapsulated phase change material slurry in ground source heat pump systems," Energy, Elsevier, vol. 122(C), pages 691-700.
    4. Qiu, Zhongzhu & Zhou, Yufei & Yao, Yuan & Liu, Fang & Guo, Ruitang, 2019. "Modification of microencapsulated phase change materials(MPCMs) by synthesizing graphene quantum dots(GQDs) and nano-aluminum for energy storage and heat transfer applications," Energy, Elsevier, vol. 181(C), pages 1331-1338.
    5. Li, Bingmeng & Shu, Dan & Wang, Ruifang & Zhai, Lanlan & Chai, Yuye & Lan, Yunjun & Cao, Hongwei & Zou, Chao, 2020. "Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage," Renewable Energy, Elsevier, vol. 145(C), pages 84-92.
    6. Li, Dong & Wu, Yangyang & Zhang, Guojun & Arıcı, Müslüm & Liu, Changyu & Wang, Fuqiang, 2018. "Influence of glazed roof containing phase change material on indoor thermal environment and energy consumption," Applied Energy, Elsevier, vol. 222(C), pages 343-350.
    7. Li, Songlin & Dong, Beibei & Wang, Jinghang & Li, Juan & Shen, Tongtong & Peng, Hao & Ling, Xiang, 2019. "Synthesis and characterization of mixed alkanes microcapsules with phase change temperature below ice point for cryogenic thermal energy storage," Energy, Elsevier, vol. 187(C).
    8. Abdolmaleki, L. & Sadrameli, S.M. & Pirvaram, A., 2020. "Application of environmental friendly and eutectic phase change materials for the efficiency enhancement of household freezers," Renewable Energy, Elsevier, vol. 145(C), pages 233-241.
    9. Liu, Huan & Niu, Jinfei & Wang, Xiaodong & Wu, Dezhen, 2019. "Design and construction of mesoporous silica/n-eicosane phase-change nanocomposites for supercooling depression and heat transfer enhancement," Energy, Elsevier, vol. 188(C).
    10. He, Yayue & Li, Wei & Han, Na & Wang, Jianping & Zhang, Xingxiang, 2019. "Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor," Applied Energy, Elsevier, vol. 247(C), pages 615-629.
    11. Geng, Xiaoye & Li, Wei & Yin, Qing & Wang, Yu & Han, Na & Wang, Ning & Bian, Junmin & Wang, Jianping & Zhang, Xingxiang, 2018. "Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity," Energy, Elsevier, vol. 159(C), pages 857-869.
    12. Li, Chaoen & Yu, Hang & Song, Yuan & Liang, Hao & Yan, Xun, 2019. "Preparation and characterization of PMMA/TiO2 hybrid shell microencapsulated PCMs for thermal energy storage," Energy, Elsevier, vol. 167(C), pages 1031-1039.
    13. Tahan Latibari, Sara & Mehrali, Mohammad & Mehrali, Mehdi & Afifi, Amalina Binti Muhammad & Mahlia, Teuku Meurah Indra & Akhiani, Amir Reza & Metselaar, Hendrik Simon Cornelis, 2015. "Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol–gel method," Energy, Elsevier, vol. 85(C), pages 635-644.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Kuan & Wang, Jifen & Xie, Huaqing & Guo, Zhixiong, 2023. "Microencapsulated phase change n-Octadecane with high heat storage for application in building energy conservation," Applied Energy, Elsevier, vol. 329(C).
    2. Ran, Fengming & Xu, Changlu & Chen, Yunkang & Cong, Rongshuai & Fang, Guiyin, 2021. "Numerical flow characteristics of microencapsulated phase change slurry flowing in a helically coiled tube for thermal energy storage," Energy, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Renjie & Huang, Xinyu & Deng, Weibin & Zheng, Ruizhi & Aftab, Waseem & Shi, Jinmin & Xie, Delong & Zou, Ruqiang & Mei, Yi, 2020. "Facile preparation of flexible eicosane/SWCNTs phase change films via colloid aggregation for thermal energy storage," Applied Energy, Elsevier, vol. 260(C).
    2. He, Yayue & Li, Wei & Han, Na & Wang, Jianping & Zhang, Xingxiang, 2019. "Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor," Applied Energy, Elsevier, vol. 247(C), pages 615-629.
    3. Zhang, Ya & Liu, Huan & Niu, Jinfei & Wang, Xiaodong & Wu, Dezhen, 2020. "Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management," Applied Energy, Elsevier, vol. 264(C).
    4. Liu, Huan & Tian, Xinxin & Ouyang, Mize & Wang, Xiang & Wu, Dezhen & Wang, Xiaodong, 2021. "Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy," Renewable Energy, Elsevier, vol. 179(C), pages 47-64.
    5. Geng, Xiaoye & Huang, Rui & Zhang, Xingxiang & Li, Wei, 2021. "Research on long-chain alkanol etherified melamine-formaldehyde resin MicroPCMs for energy storage," Energy, Elsevier, vol. 214(C).
    6. Chinnasamy, Veerakumar & Heo, Jaehyeok & Jung, Sungyong & Lee, Hoseong & Cho, Honghyun, 2023. "Shape stabilized phase change materials based on different support structures for thermal energy storage applications–A review," Energy, Elsevier, vol. 262(PB).
    7. Liu, Changhui & Xiao, Tong & Zhao, Jiateng & Liu, Qingyi & Sun, Wenjie & Guo, Chenglong & Ali, Hafiz Muhammad & Chen, Xiao & Rao, Zhonghao & Gu, Yanlong, 2023. "Polymer engineering in phase change thermal storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Xu, Lingling & Pu, Liang & Angelo, Zarrella & Zhang, Derun & Dai, Minghao & Zhang, Shengqi, 2022. "An experimental investigation on performance of microencapsulated phase change material slurry in ground heat exchanger," Renewable Energy, Elsevier, vol. 198(C), pages 296-305.
    9. Ran, Fengming & Xu, Changlu & Chen, Yunkang & Cong, Rongshuai & Fang, Guiyin, 2021. "Numerical flow characteristics of microencapsulated phase change slurry flowing in a helically coiled tube for thermal energy storage," Energy, Elsevier, vol. 223(C).
    10. Su, Weiguang & Hu, Meiyong & Wang, Li & Kokogiannakis, Georgios & Chen, Jun & Gao, Liying & Li, Anqing & Xu, Chonghai, 2022. "Microencapsulated phase change materials with graphene-based materials: Fabrication, characterisation and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Chi, Fang'ai & Xu, Liming & Peng, Changhai, 2020. "Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving," Applied Energy, Elsevier, vol. 266(C).
    12. Jiang, Liang & Lei, Yuan & Liu, Qinfeng & Lei, Jingxin, 2020. "Polyethylene glycol based self-luminous phase change materials for both thermal and light energy storage," Energy, Elsevier, vol. 193(C).
    13. Li, Weilin & Jing, Mingyi & Li, Rufei & Gao, Junxi & Zhu, Jiayin & Li, Ruixin, 2023. "Study of the optimal placement of phase change materials in existing buildings for cooling load reduction - Take the Central Plain of China as an example," Renewable Energy, Elsevier, vol. 209(C), pages 71-84.
    14. Li, Jiayin & Hu, Xiaowu & Zhang, Chuge & Luo, Wenxing & Jiang, Xiongxin, 2021. "Enhanced thermal performance of phase-change materials supported by mesoporous silica modified with polydopamine/nano-metal particles for thermal energy storage," Renewable Energy, Elsevier, vol. 178(C), pages 118-127.
    15. Wang, Ting & Qiu, Xiaolin & Chen, Xiaojing & Lu, Lixin & Zhou, Binglin, 2022. "Sponge-like form-stable phase change materials with embedded graphene oxide for enhancing the thermal storage efficiency and the temperature response in transport packaging applications," Applied Energy, Elsevier, vol. 325(C).
    16. Geng, Xiaoye & Li, Wei & Yin, Qing & Wang, Yu & Han, Na & Wang, Ning & Bian, Junmin & Wang, Jianping & Zhang, Xingxiang, 2018. "Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity," Energy, Elsevier, vol. 159(C), pages 857-869.
    17. Xu, Bin & Gan, Wen-tao & Wang, Yang-liang & Chen, Xing-ni & Fei, Yue & Pei, Gang, 2023. "Thermal performance of a novel Trombe wall integrated with direct absorption solar collector based on phase change slurry in winter," Renewable Energy, Elsevier, vol. 213(C), pages 246-258.
    18. Zeyad Amin Al-Absi & Mohd Hafizal Mohd Isa & Mazran Ismail, 2020. "Phase Change Materials (PCMs) and Their Optimum Position in Building Walls," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    19. Ding, Yanming & Chen, Wenlu & Zhang, Wenlong & Zhang, Xueting & Li, Changhai & Zhou, Ru & Miao, Fasheng, 2022. "Experimental and numerical simulation study of typical semi-transparent material pyrolysis with in-depth radiation based on micro and bench scales," Energy, Elsevier, vol. 258(C).
    20. Krzysztof Dutkowski & Marcin Kruzel, 2023. "The State of the Art on the Flow Characteristic of an Encapsulated Phase-Change Material Slurry," Energies, MDPI, vol. 16(19), pages 1-27, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220327377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.