IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924001892.html
   My bibliography  Save this article

Phase change nanocapsules incorporated with nanodiamonds for efficient photothermal energy conversion and storage

Author

Listed:
  • Shang, Bofeng
  • Yang, Gui
  • Zhang, Bin

Abstract

Phase change nanocapsules exhibit significant potential in harnessing photothermal energy to address the ever-growing energy demand; however, their application is restricted by limited solar absorption capacity and low thermal conductivity. In this study, nanodiamonds (NDs) were firstly incorporated with phase change nanocapsules to solve these issues owing to their broad light absorption range and exceptionally high thermal conductivity. Phase change nanocapsules composed of n-Octadecane core and ND/SiO2 shells were successfully synthesized through the miniemulsion polymerization method. The morphologies, chemical composition, phase change properties, thermal conductivities, and thermal stabilities of the phase change nanocapsules were comprehensively analyzed. The phase change nanocapsules exhibited a significantly high latent heat of 128.22 J/g, coupled with exceptional leak-proof performance. Notably, the nanocapsules exhibited a high thermal conductivity of 0.747 W/m·K, which was more than 5 times compared to the pristine n-Octadecane. Furthermore, the incorporation of NDs significantly enhanced the light absorption capacity of the nanocapsules, resulting in an impressive photothermal conversion efficiency of up to 92.1%. The mechanism of the enhancement was primarily attributed to the thermal vibrations of molecules within NDs as well as the optical confinement effects provided by ND/SiO2 hybrid shells. Our study presents a facile strategy for simultaneously enhancing the photothermal energy conversion and storage performance of phase change capsules, which hold tremendous potential for solar energy utilization applications in the future.

Suggested Citation

  • Shang, Bofeng & Yang, Gui & Zhang, Bin, 2024. "Phase change nanocapsules incorporated with nanodiamonds for efficient photothermal energy conversion and storage," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001892
    DOI: 10.1016/j.apenergy.2024.122806
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924001892
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.