IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v236y2019icp244-252.html
   My bibliography  Save this article

Separating photo-thermal conversion and steam generation process for evaporation enhancement using a solar absorber

Author

Listed:
  • Huang, Jian
  • He, Yurong
  • Chen, Meijie
  • Wang, Xinzhi

Abstract

Solar steam generation is an effective method combining solar energy utilization with water treatment. Photo-thermal conversion and steam generation are typically integrated to enhance the evaporation process, which have wide applications in seawater desalination, waste water treatment, sterilization and power plant fields. However, the photo-thermal enhancement for different evaporation areas remains unclear, and there are a number of important issues for membrane process (e.g., blockage of pore structures and contamination of nanoparticles). To overcome these issues, we herein propose a separating design involving a C-TiO2 absorber and a polyvinyl alcohol fiber material as the photo-thermal and steam generation units, respectively. A C-TiO2 absorber with good spectral and photo-thermal conversion characteristics was prepared. And the evaporation enhancement effect was investigated with different evaporation areas by experiments and simulations. The equivalent evaporation rate reached the maxima with the evaporation area and decreased thereafter for this separating design. The optimum behavior was achieved when the evaporation region area to photo-thermal area ratio of ca. 2.06, providing guidance for large-scale use. These results can be explained in terms of the changed thermal gradient generated between the center C-TiO2 film and the evaporation region. The design achieved equivalent evaporation rates and evaporation efficiencies of 1.24 kg·m−2·h−1 and 77.83%, respectively, paving the way for the further improvement of solar steam generation processes.

Suggested Citation

  • Huang, Jian & He, Yurong & Chen, Meijie & Wang, Xinzhi, 2019. "Separating photo-thermal conversion and steam generation process for evaporation enhancement using a solar absorber," Applied Energy, Elsevier, vol. 236(C), pages 244-252.
  • Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:244-252
    DOI: 10.1016/j.apenergy.2018.11.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918318063
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.11.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark A. Shannon & Paul W. Bohn & Menachem Elimelech & John G. Georgiadis & Benito J. Mariñas & Anne M. Mayes, 2008. "Science and technology for water purification in the coming decades," Nature, Nature, vol. 452(7185), pages 301-310, March.
    2. Liu, Zhen-Hua & Guan, Hong-Yang & Wang, Guo-Shan, 2014. "Performance optimization study on an integrated solar desalination system with multi-stage evaporation/heat recovery processes," Energy, Elsevier, vol. 76(C), pages 1001-1010.
    3. Guo, Su & Liu, Deyou & Chen, Xingying & Chu, Yinghao & Xu, Chang & Liu, Qunming & Zhou, Ling, 2017. "Model and control scheme for recirculation mode direct steam generation parabolic trough solar power plants," Applied Energy, Elsevier, vol. 202(C), pages 700-714.
    4. Duić, Neven & Guzović, Zvonimir & Kafarov, Vyatcheslav & Klemeš, Jiří Jaromír & Mathiessen, Brian vad & Yan, Jinyue, 2013. "Sustainable development of energy, water and environment systems," Applied Energy, Elsevier, vol. 101(C), pages 3-5.
    5. Ma, Sainan & Chiu, Chun Pang & Zhu, Yujiao & Tang, Chun Yin & Long, Hui & Qarony, Wayesh & Zhao, Xinhua & Zhang, Xuming & Lo, Wai Hung & Tsang, Yuen Hong, 2017. "Recycled waste black polyurethane sponges for solar vapor generation and distillation," Applied Energy, Elsevier, vol. 206(C), pages 63-69.
    6. Gao, Xuerui & Liu, Jiahong & Zhang, Jun & Yan, Jinyue & Bao, Shujun & Xu, He & Qin, Tao, 2013. "Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table," Applied Energy, Elsevier, vol. 105(C), pages 182-193.
    7. Chen, Meijie & He, Yurong & Zhu, Jiaqi & Wen, Dongsheng, 2016. "Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors," Applied Energy, Elsevier, vol. 181(C), pages 65-74.
    8. Wang, Xinzhi & He, Yurong & Liu, Xing & Cheng, Gong & Zhu, Jiaqi, 2017. "Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes," Applied Energy, Elsevier, vol. 195(C), pages 414-425.
    9. Sharshir, S.W. & Peng, Guilong & Wu, Lirong & Essa, F.A. & Kabeel, A.E. & Yang, Nuo, 2017. "The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance," Applied Energy, Elsevier, vol. 191(C), pages 358-366.
    10. Amjad, Muhammad & Raza, Ghulam & Xin, Yan & Pervaiz, Shahid & Xu, Jinliang & Du, Xiaoze & Wen, Dongsheng, 2017. "Volumetric solar heating and steam generation via gold nanofluids," Applied Energy, Elsevier, vol. 206(C), pages 393-400.
    11. George Ni & Gabriel Li & Svetlana V. Boriskina & Hongxia Li & Weilin Yang & TieJun Zhang & Gang Chen, 2016. "Steam generation under one sun enabled by a floating structure with thermal concentration," Nature Energy, Nature, vol. 1(9), pages 1-7, September.
    12. Kyuyoung Bae & Gumin Kang & Suehyun K. Cho & Wounjhang Park & Kyoungsik Kim & Willie J. Padilla, 2015. "Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    13. Liu, Xing & Wang, Xinzhi & Huang, Jian & Cheng, Gong & He, Yurong, 2018. "Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid," Applied Energy, Elsevier, vol. 220(C), pages 302-312.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Jian & Hu, Yanwei & Bai, Yijie & He, Yurong & Zhu, Jiaqi, 2020. "Solar membrane distillation enhancement through thermal concentration," Energy, Elsevier, vol. 211(C).
    2. Zhang, Wei & Zheng, Tuo & Zhu, Haiguang & Wu, Daxiong & Zhang, Canying & Zhu, Haitao, 2022. "Insight into the role of the channel in photothermal materials for solar interfacial water evaporation," Renewable Energy, Elsevier, vol. 193(C), pages 706-714.
    3. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
    4. Zhang, Qian & Hu, Run & Chen, Yali & Xiao, Xingfang & Zhao, Guomeng & Yang, Hongjun & Li, Jinhua & Xu, Weilin & Wang, Xianbao, 2020. "Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion," Applied Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xing & Wang, Xinzhi & Huang, Jian & Cheng, Gong & He, Yurong, 2018. "Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid," Applied Energy, Elsevier, vol. 220(C), pages 302-312.
    2. Wang, Xinzhi & He, Yurong & Liu, Xing & Cheng, Gong & Zhu, Jiaqi, 2017. "Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes," Applied Energy, Elsevier, vol. 195(C), pages 414-425.
    3. Gong, Feng & Wang, Wenbin & Li, Hao & Xia, Dawei (David) & Dai, Qingwen & Wu, Xinlin & Wang, Mingzhou & Li, Jian & Papavassiliou, Dimitrios V. & Xiao, Rui, 2020. "Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification," Applied Energy, Elsevier, vol. 261(C).
    4. Chen, Meijie & He, Yurong & Wang, Xinzhi & Hu, Yanwei, 2018. "Complementary enhanced solar thermal conversion performance of core-shell nanoparticles," Applied Energy, Elsevier, vol. 211(C), pages 735-742.
    5. Liu, Shang & Huang, Congliang & Luo, Xiao & Guo, Chuwen, 2019. "Performance optimization of bi-layer solar steam generation system through tuning porosity of bottom layer," Applied Energy, Elsevier, vol. 239(C), pages 504-513.
    6. Mu, L. & Chen, L. & Lin, L. & Park, Y.H. & Wang, H. & Xu, P. & Kota, K. & Kuravi, S., 2021. "An overview of solar still enhancement approaches for increased freshwater production rates from a thermal process perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Huang, Qichen & Liang, Xuechen & Yan, Chongyuan & Liu, Yizhen, 2021. "Review of interface solar-driven steam generation systems: High-efficiency strategies, applications and challenges," Applied Energy, Elsevier, vol. 283(C).
    8. Amjad, Muhammad & Gardy, Jabbar & Hassanpour, Ali & Wen, Dongsheng, 2018. "Novel draw solution for forward osmosis based solar desalination," Applied Energy, Elsevier, vol. 230(C), pages 220-231.
    9. Fan, Qi & Wu, Lin & Liang, Yan & Xu, Zhicheng & Li, Yungeng & Wang, Jun & Lund, Peter D. & Zeng, Mengyuan & Wang, Wei, 2021. "The role of micro-nano pores in interfacial solar evaporation systems – A review," Applied Energy, Elsevier, vol. 292(C).
    10. Xin Jin & Guiping Lin & Haichuan Jin, 2021. "Experimental Investigations on Steam Generation in Nanofluids under Concentrated Solar Radiation," Energies, MDPI, vol. 14(13), pages 1-18, July.
    11. Gong, Biyao & Yang, Huachao & Wu, Shenghao & Tian, Yikuan & Yan, Jianhua & Cen, Kefa & Bo, Zheng & Ostrikov, Kostya (Ken), 2021. "Phase change material enhanced sustained and energy-efficient solar-thermal water desalination," Applied Energy, Elsevier, vol. 301(C).
    12. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
    13. Zhang, Qian & Hu, Run & Chen, Yali & Xiao, Xingfang & Zhao, Guomeng & Yang, Hongjun & Li, Jinhua & Xu, Weilin & Wang, Xianbao, 2020. "Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion," Applied Energy, Elsevier, vol. 276(C).
    14. Mehrali, Mohammad & Ghatkesar, Murali Krishna & Pecnik, Rene, 2018. "Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids," Applied Energy, Elsevier, vol. 224(C), pages 103-115.
    15. Akkala, Siva Ram & Kaviti, Ajay Kumar & ArunKumar, T. & Sikarwar, Vineet Singh, 2021. "Progress on suspended nanostructured engineering materials powered solar distillation- a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    17. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    18. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2019. "Energy and exergy analysis and optimization of low-flux direct absorption solar collectors (DASCs): Balancing power- and temperature-gain," Renewable Energy, Elsevier, vol. 133(C), pages 861-872.
    19. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    20. Ma, Sainan & Chiu, Chun Pang & Zhu, Yujiao & Tang, Chun Yin & Long, Hui & Qarony, Wayesh & Zhao, Xinhua & Zhang, Xuming & Lo, Wai Hung & Tsang, Yuen Hong, 2017. "Recycled waste black polyurethane sponges for solar vapor generation and distillation," Applied Energy, Elsevier, vol. 206(C), pages 63-69.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:236:y:2019:i:c:p:244-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.