IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v276y2020ics0306261920310576.html
   My bibliography  Save this article

Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion

Author

Listed:
  • Zhang, Qian
  • Hu, Run
  • Chen, Yali
  • Xiao, Xingfang
  • Zhao, Guomeng
  • Yang, Hongjun
  • Li, Jinhua
  • Xu, Weilin
  • Wang, Xianbao

Abstract

As a direct approach to utilize the abundant solar energy, solar steam generation surges in recent decade to generate fresh water from sewage and seawater, while still suffering from challenges like a limited photothermal efficiency and scale manufacturing. To enhance the solar energy utilization efficiency, inspired from banyan tree, we demonstrate a new, scalable and low-cost hierarchical evaporator, comprising an activated carbon-cotton fabric as photothermal leaves, commercial polyester pillars as prop roots, and expandable polyethylene foams, to largely utilize solar energy. The both sides of fabric and lateral area of polyester pillars collectively contribute to a rather high evaporation rate 1.95 kg m−2 h−1, with enhanced solar efficiency under 1 sun illumination. Polyester pillars as water paths can reduce the contact area between the photothermal layer and bulk water to prevent heat loss. The hierarchical evaporator is able to enhance solar energy utilization by increasing the extra evaporation area including the bottom side of fabric and lateral area of polyester pillars and thus behave most similarly to the transpiration process of banyan tree from both sides of leaves and prop roots. Moreover, the proposed hierarchical evaporator is further demonstrated to possess anti-salt-clogging performance by changing the number of polyester pillars. The banyan-inspired hierarchical evaporator is scalable, feasible, and low-cost, showing great potential for direct industrial applications of solar energy on clean water generation and sewage treatment.

Suggested Citation

  • Zhang, Qian & Hu, Run & Chen, Yali & Xiao, Xingfang & Zhao, Guomeng & Yang, Hongjun & Li, Jinhua & Xu, Weilin & Wang, Xianbao, 2020. "Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion," Applied Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920310576
    DOI: 10.1016/j.apenergy.2020.115545
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920310576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xinzhi & He, Yurong & Liu, Xing & Cheng, Gong & Zhu, Jiaqi, 2017. "Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes," Applied Energy, Elsevier, vol. 195(C), pages 414-425.
    2. Liu, Peng-Fei & Miao, Lei & Deng, Ziyang & Zhou, Jianhua & Gu, Yufei & Chen, Siyi & Cai, Huanfu & Sun, Lixian & Tanemura, Sakae, 2019. "Flame-treated and fast-assembled foam system for direct solar steam generation and non-plugging high salinity desalination with self-cleaning effect," Applied Energy, Elsevier, vol. 241(C), pages 652-659.
    3. Amjad, Muhammad & Raza, Ghulam & Xin, Yan & Pervaiz, Shahid & Xu, Jinliang & Du, Xiaoze & Wen, Dongsheng, 2017. "Volumetric solar heating and steam generation via gold nanofluids," Applied Energy, Elsevier, vol. 206(C), pages 393-400.
    4. Liu, Shang & Huang, Congliang & Luo, Xiao & Guo, Chuwen, 2019. "Performance optimization of bi-layer solar steam generation system through tuning porosity of bottom layer," Applied Energy, Elsevier, vol. 239(C), pages 504-513.
    5. Huang, Jian & He, Yurong & Chen, Meijie & Wang, Xinzhi, 2019. "Separating photo-thermal conversion and steam generation process for evaporation enhancement using a solar absorber," Applied Energy, Elsevier, vol. 236(C), pages 244-252.
    6. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    7. Ma, Sainan & Chiu, Chun Pang & Zhu, Yujiao & Tang, Chun Yin & Long, Hui & Qarony, Wayesh & Zhao, Xinhua & Zhang, Xuming & Lo, Wai Hung & Tsang, Yuen Hong, 2017. "Recycled waste black polyurethane sponges for solar vapor generation and distillation," Applied Energy, Elsevier, vol. 206(C), pages 63-69.
    8. Gong, Feng & Wang, Wenbin & Li, Hao & Xia, Dawei (David) & Dai, Qingwen & Wu, Xinlin & Wang, Mingzhou & Li, Jian & Papavassiliou, Dimitrios V. & Xiao, Rui, 2020. "Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification," Applied Energy, Elsevier, vol. 261(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Qichen & Liang, Xuechen & Yan, Chongyuan & Liu, Yizhen, 2021. "Review of interface solar-driven steam generation systems: High-efficiency strategies, applications and challenges," Applied Energy, Elsevier, vol. 283(C).
    2. Fan, Qi & Wu, Lin & Liang, Yan & Xu, Zhicheng & Li, Yungeng & Wang, Jun & Lund, Peter D. & Zeng, Mengyuan & Wang, Wei, 2021. "The role of micro-nano pores in interfacial solar evaporation systems – A review," Applied Energy, Elsevier, vol. 292(C).
    3. Ge, Fangqing & Fei, Liang & Chen, Xin & Yin, Yunjie & Wang, Chaoxia, 2023. "Light-colored solar-driven PANI/polyacrylonitrile fiber with low-temperature resistance for wearable heater," Renewable Energy, Elsevier, vol. 206(C), pages 949-959.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Feng & Wang, Wenbin & Li, Hao & Xia, Dawei (David) & Dai, Qingwen & Wu, Xinlin & Wang, Mingzhou & Li, Jian & Papavassiliou, Dimitrios V. & Xiao, Rui, 2020. "Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification," Applied Energy, Elsevier, vol. 261(C).
    2. Ghafurian, Mohammad Mustafa & Malmir, Mohammad Reza & Akbari, Zohreh & Vafaei, Mohammad & Niazmand, Hamid & Goharshadi, Elaheh K. & Ebrahimi, Atefe & Mahian, Omid, 2022. "Interfacial solar steam generation by sawdust coated with W doped VO2," Energy, Elsevier, vol. 244(PB).
    3. Huang, Jian & He, Yurong & Chen, Meijie & Wang, Xinzhi, 2019. "Separating photo-thermal conversion and steam generation process for evaporation enhancement using a solar absorber," Applied Energy, Elsevier, vol. 236(C), pages 244-252.
    4. Fan, Qi & Wu, Lin & Liang, Yan & Xu, Zhicheng & Li, Yungeng & Wang, Jun & Lund, Peter D. & Zeng, Mengyuan & Wang, Wei, 2021. "The role of micro-nano pores in interfacial solar evaporation systems – A review," Applied Energy, Elsevier, vol. 292(C).
    5. Gong, Biyao & Yang, Huachao & Wu, Shenghao & Tian, Yikuan & Yan, Jianhua & Cen, Kefa & Bo, Zheng & Ostrikov, Kostya (Ken), 2021. "Phase change material enhanced sustained and energy-efficient solar-thermal water desalination," Applied Energy, Elsevier, vol. 301(C).
    6. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
    7. Luo, Xiao & Shi, Jincheng & Zhao, Changying & Luo, Zhouyang & Gu, Xiaokun & Bao, Hua, 2021. "The energy efficiency of interfacial solar desalination," Applied Energy, Elsevier, vol. 302(C).
    8. Meng, Zhaoguo & Li, Zhenlin & Li, Yang & Zhang, Canying & Wang, Kongxiang & Yu, Wei & Wu, Daxiong & Zhu, Haitao & Li, Wei, 2022. "Novel nanofluid based efficient solar vaporization systems with applications in desalination and wastewater treatment," Energy, Elsevier, vol. 247(C).
    9. Zhang, Wei & Zheng, Tuo & Zhu, Haiguang & Wu, Daxiong & Zhang, Canying & Zhu, Haitao, 2022. "Insight into the role of the channel in photothermal materials for solar interfacial water evaporation," Renewable Energy, Elsevier, vol. 193(C), pages 706-714.
    10. Luo, Xiao & Wu, Dongxu & Huang, Congliang & Rao, Zhonghao, 2019. "Skeleton double layer structure for high solar steam generation," Energy, Elsevier, vol. 183(C), pages 1032-1039.
    11. Amjad, Muhammad & Gardy, Jabbar & Hassanpour, Ali & Wen, Dongsheng, 2018. "Novel draw solution for forward osmosis based solar desalination," Applied Energy, Elsevier, vol. 230(C), pages 220-231.
    12. Liu, Shang & Huang, Congliang & Luo, Xiao & Guo, Chuwen, 2019. "Performance optimization of bi-layer solar steam generation system through tuning porosity of bottom layer," Applied Energy, Elsevier, vol. 239(C), pages 504-513.
    13. Mehrali, Mohammad & Ghatkesar, Murali Krishna & Pecnik, Rene, 2018. "Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids," Applied Energy, Elsevier, vol. 224(C), pages 103-115.
    14. Liu, Peng-Fei & Miao, Lei & Deng, Ziyang & Zhou, Jianhua & Gu, Yufei & Chen, Siyi & Cai, Huanfu & Sun, Lixian & Tanemura, Sakae, 2019. "Flame-treated and fast-assembled foam system for direct solar steam generation and non-plugging high salinity desalination with self-cleaning effect," Applied Energy, Elsevier, vol. 241(C), pages 652-659.
    15. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    16. Kuzmenkov, D.M. & Delov, M.I. & Zeynalyan, K. & Struchalin, P.G. & Alyaev, S. & He, Y. & Kutsenko, K.V. & Balakin, B.V., 2020. "Solar steam generation in fine dispersions of graphite particles," Renewable Energy, Elsevier, vol. 161(C), pages 265-277.
    17. Zhu, Guihua & Wang, Lingling & Bing, Naici & Xie, Huaqing & Yu, Wei, 2019. "Enhancement of photothermal conversion performance using nanofluids based on bimetallic Ag-Au alloys in nitrogen-doped graphitic polyhedrons," Energy, Elsevier, vol. 183(C), pages 747-755.
    18. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    19. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2019. "Energy and exergy analysis and optimization of low-flux direct absorption solar collectors (DASCs): Balancing power- and temperature-gain," Renewable Energy, Elsevier, vol. 133(C), pages 861-872.
    20. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920310576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.