IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v247y2022ics0360544222004169.html
   My bibliography  Save this article

Novel nanofluid based efficient solar vaporization systems with applications in desalination and wastewater treatment

Author

Listed:
  • Meng, Zhaoguo
  • Li, Zhenlin
  • Li, Yang
  • Zhang, Canying
  • Wang, Kongxiang
  • Yu, Wei
  • Wu, Daxiong
  • Zhu, Haitao
  • Li, Wei

Abstract

The current work proposes a new strategy to improve solar evaporation efficiency and explore the real applications of volumetric solar evaporation device in desalination and wastewater treatment. Nanofluid based volumetric solar evaporation system is efficient to enhance the absorbance of solar irradiation. However, the solar evaporation efficiencies are relatively low. There is a need to investigate the fundamentals of the limitation and find a new strategy to improve the solar evaporation efficiency. In this paper, a novel device containing tungsten carbide nanofluids as work fluids is designed for the first time to reduce heat loss towards the bulk water, improve the stability of nanofluids, and avoid contamination of nanoparticles. The results show that tungsten carbide nanofluids of 0.3 wt% can harvest 99% of the incident solar energy within 1 cm penetration distance. The photothermal conversion efficiency is 97.7%. The novel device gives an evaporation rate of 1.235 kg m−2 h−1 and reached solar evaporation efficiency of 74.9% under 1-sun irradiation. The applications in desalination and wastewater treatment show that the ion rejection rate of seawater is higher than 99.99%, and the content of heavy metal ion is significantly lower than that in the World Health Organization drinking-water standard.

Suggested Citation

  • Meng, Zhaoguo & Li, Zhenlin & Li, Yang & Zhang, Canying & Wang, Kongxiang & Yu, Wei & Wu, Daxiong & Zhu, Haitao & Li, Wei, 2022. "Novel nanofluid based efficient solar vaporization systems with applications in desalination and wastewater treatment," Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222004169
    DOI: 10.1016/j.energy.2022.123513
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222004169
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Guihua & Wang, Lingling & Bing, Naici & Xie, Huaqing & Yu, Wei, 2019. "Enhancement of photothermal conversion performance using nanofluids based on bimetallic Ag-Au alloys in nitrogen-doped graphitic polyhedrons," Energy, Elsevier, vol. 183(C), pages 747-755.
    2. Jin, Haichuan & Lin, Guiping & Zeiny, Aimen & Bai, Lizhan & Wen, Dongsheng, 2019. "Nanoparticle-based solar vapor generation: An experimental and numerical study," Energy, Elsevier, vol. 178(C), pages 447-459.
    3. Peng Tao & George Ni & Chengyi Song & Wen Shang & Jianbo Wu & Jia Zhu & Gang Chen & Tao Deng, 2018. "Solar-driven interfacial evaporation," Nature Energy, Nature, vol. 3(12), pages 1031-1041, December.
    4. Amjad, Muhammad & Raza, Ghulam & Xin, Yan & Pervaiz, Shahid & Xu, Jinliang & Du, Xiaoze & Wen, Dongsheng, 2017. "Volumetric solar heating and steam generation via gold nanofluids," Applied Energy, Elsevier, vol. 206(C), pages 393-400.
    5. Yu, Bendong & Li, Niansi & Xie, Hao & Ji, Jie, 2021. "The performance analysis on a novel purification-cleaning trombe wall based on solar thermal sterilization and thermal catalytic principles," Energy, Elsevier, vol. 225(C).
    6. Liu, Xing & Wang, Xinzhi & Huang, Jian & Cheng, Gong & He, Yurong, 2018. "Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid," Applied Energy, Elsevier, vol. 220(C), pages 302-312.
    7. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    8. Pal, Ram Kumar & K., Ravi Kumar, 2021. "Two-fluid modeling of direct steam generation in the receiver of parabolic trough solar collector with non-uniform heat flux," Energy, Elsevier, vol. 226(C).
    9. Akram, Naveed & Montazer, Elham & Kazi, S.N. & Soudagar, Manzoore Elahi M. & Ahmed, Waqar & Zubir, Mohd Nashrul Mohd & Afzal, Asif & Muhammad, Mohd Ridha & Ali, Hafiz Muhammad & Márquez, Fausto Pedro , 2021. "Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids," Energy, Elsevier, vol. 227(C).
    10. El-Sebaii, A.A. & Ramadan, M.R.I. & Aboul-Enein, S. & Khallaf, A.M., 2011. "History of the solar ponds: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3319-3325, August.
    11. Wang, Hao & Li, Xiaoke & Luo, Boqiu & Wei, Ke & Zeng, Guangyong, 2021. "The MXene/water nanofluids with high stability and photo-thermal conversion for direct absorption solar collectors: A comparative study," Energy, Elsevier, vol. 227(C).
    12. Wang, Kongxiang & He, Yan & Kan, Ankang & Yu, Wei & Wang, Debing & Zhang, Liyie & Zhu, Guihua & Xie, Huaqing & She, Xiaohui, 2019. "Significant photothermal conversion enhancement of nanofluids induced by Rayleigh-Bénard convection for direct absorption solar collectors," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biswas, Nirmalendu & Mandal, Dipak Kumar & Manna, Nirmal K. & Benim, Ali Cemal, 2023. "Enhanced energy and mass transport dynamics in a thermo-magneto-bioconvective porous system containing oxytactic bacteria and nanoparticles: cleaner energy application," Energy, Elsevier, vol. 263(PB).
    2. Geovo, Leonardo & Ri, Guilherme Dal & Kumar, Rahul & Verma, Sujit Kumar & Roberts, Justo J. & Mendiburu, Andrés Z., 2023. "Theoretical model for flat plate solar collectors operating with nanofluids: Case study for Porto Alegre, Brazil," Energy, Elsevier, vol. 263(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Wen, Jin & Li, Xiaoke & Zhang, He & Chen, Meijie & Wu, Xiaohu, 2022. "Enhancement of solar absorption performance using TiN@SiCw plasmonic nanofluids for effective photo-thermal conversion: Numerical and experimental investigation," Renewable Energy, Elsevier, vol. 193(C), pages 1062-1073.
    3. Wang, Hao & Li, Xiaoke & Luo, Boqiu & Wei, Ke & Zeng, Guangyong, 2021. "The MXene/water nanofluids with high stability and photo-thermal conversion for direct absorption solar collectors: A comparative study," Energy, Elsevier, vol. 227(C).
    4. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
    5. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    6. Gong, Feng & Wang, Wenbin & Li, Hao & Xia, Dawei (David) & Dai, Qingwen & Wu, Xinlin & Wang, Mingzhou & Li, Jian & Papavassiliou, Dimitrios V. & Xiao, Rui, 2020. "Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification," Applied Energy, Elsevier, vol. 261(C).
    7. Kuzmenkov, D.M. & Delov, M.I. & Zeynalyan, K. & Struchalin, P.G. & Alyaev, S. & He, Y. & Kutsenko, K.V. & Balakin, B.V., 2020. "Solar steam generation in fine dispersions of graphite particles," Renewable Energy, Elsevier, vol. 161(C), pages 265-277.
    8. Huang, Jian & He, Yurong & Chen, Meijie & Wang, Xinzhi, 2019. "Separating photo-thermal conversion and steam generation process for evaporation enhancement using a solar absorber," Applied Energy, Elsevier, vol. 236(C), pages 244-252.
    9. Amjad, Muhammad & Gardy, Jabbar & Hassanpour, Ali & Wen, Dongsheng, 2018. "Novel draw solution for forward osmosis based solar desalination," Applied Energy, Elsevier, vol. 230(C), pages 220-231.
    10. Fan, Qi & Wu, Lin & Liang, Yan & Xu, Zhicheng & Li, Yungeng & Wang, Jun & Lund, Peter D. & Zeng, Mengyuan & Wang, Wei, 2021. "The role of micro-nano pores in interfacial solar evaporation systems – A review," Applied Energy, Elsevier, vol. 292(C).
    11. Ghafurian, Mohammad Mustafa & Malmir, Mohammad Reza & Akbari, Zohreh & Vafaei, Mohammad & Niazmand, Hamid & Goharshadi, Elaheh K. & Ebrahimi, Atefe & Mahian, Omid, 2022. "Interfacial solar steam generation by sawdust coated with W doped VO2," Energy, Elsevier, vol. 244(PB).
    12. Zhang, Qian & Hu, Run & Chen, Yali & Xiao, Xingfang & Zhao, Guomeng & Yang, Hongjun & Li, Jinhua & Xu, Weilin & Wang, Xianbao, 2020. "Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion," Applied Energy, Elsevier, vol. 276(C).
    13. Luo, Xiao & Shi, Jincheng & Zhao, Changying & Luo, Zhouyang & Gu, Xiaokun & Bao, Hua, 2021. "The energy efficiency of interfacial solar desalination," Applied Energy, Elsevier, vol. 302(C).
    14. Zhang, Wei & Li, Zhenlin & Zhang, Canying & Lin, Yusheng & Zhu, Haitao & Meng, Zhaoguo & Wu, Daxiong, 2022. "Improvement of the efficiency of volumetric solar steam generation by enhanced solar harvesting and energy management," Renewable Energy, Elsevier, vol. 183(C), pages 820-829.
    15. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    16. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Sun, Cheng & Chwieduk, Dorota & Kalogirou, Soteris A., 2021. "Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid," Renewable Energy, Elsevier, vol. 180(C), pages 30-39.
    17. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    18. Cai, Wei & Pan, Ying & Feng, Xiaming & Mu, Xiaowei & Hu, Weizhao & Song, Lei & Wang, Xin & Hu, Yuan, 2022. "Cicada wing-inspired solar transmittance enhancement and hydrophobicity design for graphene-based solar steam generation: A novel gas phase deposition approach," Applied Energy, Elsevier, vol. 320(C).
    19. Shenxiang Zhang & Xian Wei & Xue Cao & Meiwen Peng & Min Wang & Lin Jiang & Jian Jin, 2024. "Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Guo, Qijing & Yi, Hao & Jia, Feifei & Song, Shaoxian, 2022. "Vertical porous MoS2/hectorite double-layered aerogel as superior salt resistant and highly efficient solar steam generators," Renewable Energy, Elsevier, vol. 194(C), pages 68-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222004169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.