IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v215y2021ipbs0360544220321654.html
   My bibliography  Save this article

Energy cost and efficiency analysis of building resilience against power outage by shared parking station for electric vehicles and demand response program

Author

Listed:
  • Tian, Man-Wen
  • Talebizadehsardari, Pouyan

Abstract

This paper considers two commercial and residential buildings for building energy resilience against natural disasters that cause a power outage. The buildings are modeled with a shared parking station for their electric vehicles. The peer-to-peer operation is modeled for the buildings. The electric vehicles inside the parking station have dissimilar patterns of availability and such dissimilarity helps the buildings to be benefited from the vehicles for extra hours. The power outage is modeled at different day hours and with various durations. The building is supported by energy management options to handle such disruptions. The options are a peer-to-peer operation of the building, electrical vehicle charging-discharging, partial charge ability, load curtailment, and load adjustment. The proposed model only utilizes available components of the buildings and it does not need to install further components. The purpose is to minimize energy cost and maximize energy resilience under natural disasters. The resilience is defined as critical load restoration and minimum energy loss under various power outages. The results demonstrate that the designated energy management options can practically minimize energy cost and improve energy resilience following blackouts. The electric vehicles can reduce energy cost by about 25% and supply the loads under 7-h power outage.

Suggested Citation

  • Tian, Man-Wen & Talebizadehsardari, Pouyan, 2021. "Energy cost and efficiency analysis of building resilience against power outage by shared parking station for electric vehicles and demand response program," Energy, Elsevier, vol. 215(PB).
  • Handle: RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220321654
    DOI: 10.1016/j.energy.2020.119058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220321654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Zhile & Li, Kang & Guo, Yuanjun & Feng, Shengzhong & Niu, Qun & Xue, Yusheng & Foley, Aoife, 2019. "A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles," Energy, Elsevier, vol. 170(C), pages 889-905.
    2. Ioakimidis, Christos S. & Thomas, Dimitrios & Rycerski, Pawel & Genikomsakis, Konstantinos N., 2018. "Peak shaving and valley filling of power consumption profile in non-residential buildings using an electric vehicle parking lot," Energy, Elsevier, vol. 148(C), pages 148-158.
    3. Ibrahim Ahmad & Ghaeth Fandi & Zdenek Muller & Josef Tlusty, 2019. "Voltage Quality and Power Factor Improvement in Smart Grids Using Controlled DG Units," Energies, MDPI, vol. 12(18), pages 1-18, September.
    4. Nikoobakht, Ahmad & Aghaei, Jamshid & Khatami, Roohallah & Mahboubi-Moghaddam, Esmaeel & Parvania, Masood, 2019. "Stochastic flexible transmission operation for coordinated integration of plug-in electric vehicles and renewable energy sources," Applied Energy, Elsevier, vol. 238(C), pages 225-238.
    5. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2018. "Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule," Applied Energy, Elsevier, vol. 210(C), pages 1188-1206.
    6. Colmenar-Santos, Antonio & Muñoz-Gómez, Antonio-Miguel & Rosales-Asensio, Enrique & López-Rey, África, 2019. "Electric vehicle charging strategy to support renewable energy sources in Europe 2050 low-carbon scenario," Energy, Elsevier, vol. 183(C), pages 61-74.
    7. Sehar, Fakeha & Pipattanasomporn, Manisa & Rahman, Saifur, 2017. "Demand management to mitigate impacts of plug-in electric vehicle fast charge in buildings with renewables," Energy, Elsevier, vol. 120(C), pages 642-651.
    8. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    9. Mehrjerdi, Hasan & Bornapour, Mosayeb & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh, 2019. "Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes," Energy, Elsevier, vol. 168(C), pages 919-930.
    10. Mehrjerdi, Hasan & Hemmati, Reza, 2020. "Coordination of vehicle-to-home and renewable capacity resources for energy management in resilience and self-healing building," Renewable Energy, Elsevier, vol. 146(C), pages 568-579.
    11. Manríquez, Francisco & Sauma, Enzo & Aguado, José & de la Torre, Sebastián & Contreras, Javier, 2020. "The impact of electric vehicle charging schemes in power system expansion planning," Applied Energy, Elsevier, vol. 262(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asfand Yar Ali & Akhtar Hussain & Ju-Won Baek & Hak-Man Kim, 2020. "Optimal Operation of Networked Microgrids for Enhancing Resilience Using Mobile Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-20, December.
    2. Shen, Ziqi & Wei, Wei & Wu, Lei & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Economic dispatch of power systems with LMP-dependent demands: A non-iterative MILP model," Energy, Elsevier, vol. 233(C).
    3. Xi Ye & Gan Li & Tong Zhu & Lei Zhang & Yanfeng Wang & Xiang Wang & Hua Zhong, 2023. "A Dispatching Method for Large-Scale Interruptible Load and Electric Vehicle Clusters to Alleviate Overload of Interface Power Flow," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    4. Ana Cabrera-Tobar & Francesco Grimaccia & Sonia Leva, 2023. "Energy Resilience in Telecommunication Networks: A Comprehensive Review of Strategies and Challenges," Energies, MDPI, vol. 16(18), pages 1-23, September.
    5. Lü, Xueqin & Deng, Ruiyu & Chen, Chao & Wu, Yinbo & Meng, Ruidong & Long, Liyuan, 2022. "Performance optimization of fuel cell hybrid power robot based on power demand prediction and model evaluation," Applied Energy, Elsevier, vol. 316(C).
    6. Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Borge-Diez, David & Icaza, Daniel & Açıkkalp, Emin & Amaris, Hortensia, 2021. "Combined vehicle to building (V2B) and vehicle to home (V2H) strategy to increase electric vehicle market share," Energy, Elsevier, vol. 237(C).
    8. Man-Wen Tian & Shu-Rong Yan & Ardashir Mohammadzadeh & Jafar Tavoosi & Saleh Mobayen & Rabia Safdar & Wudhichai Assawinchaichote & Mai The Vu & Anton Zhilenkov, 2021. "Stability of Interval Type-3 Fuzzy Controllers for Autonomous Vehicles," Mathematics, MDPI, vol. 9(21), pages 1-17, October.
    9. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sridharan, S. & Sivakumar, S. & Shanmugasundaram, N. & Swapna, S. & Vasan Prabhu, V., 2023. "A hybrid approach based energy management for building resilience against power outage by shared parking station for EVs," Renewable Energy, Elsevier, vol. 216(C).
    2. Cao, Sunliang, 2019. "The impact of electric vehicles and mobile boundary expansions on the realization of zero-emission office buildings," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    4. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    6. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    7. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).
    8. Thomas, Dimitrios & D’Hoop, Gaspard & Deblecker, Olivier & Genikomsakis, Konstantinos N. & Ioakimidis, Christos S., 2020. "An integrated tool for optimal energy scheduling and power quality improvement of a microgrid under multiple demand response schemes," Applied Energy, Elsevier, vol. 260(C).
    9. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    10. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Usher, John M. & Jaradat, Raed, 2018. "A collaborative energy sharing optimization model among electric vehicle charging stations, commercial buildings, and power grid," Applied Energy, Elsevier, vol. 229(C), pages 841-857.
    12. Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak, 2023. "The Novel Approach of Using Electric Vehicles as a Resource to Mitigate the Negative Effects of Power Rationing on Non-Residential Buildings," Energies, MDPI, vol. 17(1), pages 1-36, December.
    13. Mortaz, Ebrahim & Vinel, Alexander & Dvorkin, Yury, 2019. "An optimization model for siting and sizing of vehicle-to-grid facilities in a microgrid," Applied Energy, Elsevier, vol. 242(C), pages 1649-1660.
    14. Hemmati, Reza & Mehrjerdi, Hasan & Bornapour, Mosayeb, 2020. "Hybrid hydrogen-battery storage to smooth solar energy volatility and energy arbitrage considering uncertain electrical-thermal loads," Renewable Energy, Elsevier, vol. 154(C), pages 1180-1187.
    15. Isaías Gomes & Karol Bot & Maria Graça Ruano & António Ruano, 2022. "Recent Techniques Used in Home Energy Management Systems: A Review," Energies, MDPI, vol. 15(8), pages 1-41, April.
    16. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2020. "Increasing self-consumption of renewable energy through the Building to Vehicle to Building approach applied to multiple users connected in a virtual micro-grid," Renewable Energy, Elsevier, vol. 159(C), pages 1165-1176.
    17. Virginia Casella & Daniel Fernandez Valderrama & Giulio Ferro & Riccardo Minciardi & Massimo Paolucci & Luca Parodi & Michela Robba, 2022. "Towards the Integration of Sustainable Transportation and Smart Grids: A Review on Electric Vehicles’ Management," Energies, MDPI, vol. 15(11), pages 1-23, May.
    18. Ghafoori, Mahdi & Abdallah, Moatassem & Kim, Serena, 2023. "Electricity peak shaving for commercial buildings using machine learning and vehicle to building (V2B) system," Applied Energy, Elsevier, vol. 340(C).
    19. Singh, Kamini & Singh, Anoop, 2022. "Behavioural modelling for personal and societal benefits of V2G/V2H integration on EV adoption," Applied Energy, Elsevier, vol. 319(C).
    20. Mehrjerdi, Hasan & Hemmati, Reza, 2020. "Energy and uncertainty management through domestic demand response in the residential building," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220321654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.