IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v203y2020ics0360544220309385.html
   My bibliography  Save this article

Combustion behaviors and characteristic parameters determination of sassafras wood under different heating conditions

Author

Listed:
  • Xu, Li
  • Li, Shengcai
  • Sun, Wanghu
  • Ma, Xin
  • Cao, Shuchao

Abstract

The combustion of sassafras wood (Sassafras tzumu Hemsl) was investigated based on thermogravimetric analysis coupled with fire propagation apparatus under different heating conditions. The activation energies for various conversions estimated by two different non-isothermal methods were in the range of 83.13–235.51 kJ/mol. Two regions were established: Region I is oxidative pyrolysis corresponding to α < 0.65, Region II refers to char combustion with α ≥ 0.65. Thermodynamic parameters ΔH, ΔG and ΔS were determined more precisely by activated complex theory. The combustion indices (Ci, Cb, Cv and S) were found to be notably increasing at higher heating rates, indicating a more concentrated combustion zone and superior combustibility. During the whole combustion process in bench-scale FPA experiments, when the sample thickness increases from 0.5 to 1.5 cm, characteristic parameters including TTI, Peak EHC, THR varies from 93 to 144s, 10.43 to 9.93 MJ/kg, 25.14–60.75 MJ/m2, respectively. The evolution of main gas components (CO, CO2) are generated due to the breakdown of hemicellulose, and possible formation pathways of CO and CO2 were tentatively presented as a two-step reaction.

Suggested Citation

  • Xu, Li & Li, Shengcai & Sun, Wanghu & Ma, Xin & Cao, Shuchao, 2020. "Combustion behaviors and characteristic parameters determination of sassafras wood under different heating conditions," Energy, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309385
    DOI: 10.1016/j.energy.2020.117831
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220309385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Yanming & Zhang, Wenlong & Yu, Lei & Lu, Kaihua, 2019. "The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis," Energy, Elsevier, vol. 176(C), pages 582-588.
    2. Ding, Yanming & Zhang, Juan & He, Qize & Huang, Biqing & Mao, Shaohua, 2019. "The application and validity of various reaction kinetic models on woody biomass pyrolysis," Energy, Elsevier, vol. 179(C), pages 784-791.
    3. Córdova, O. & Ruiz-Filippi, G. & Fermoso, F.G. & Chamy, R., 2018. "Influence of growth kinetics of microalgal cultures on biogas production," Renewable Energy, Elsevier, vol. 122(C), pages 455-459.
    4. Lu, Jau-Jang & Chen, Wei-Hsin, 2015. "Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis," Applied Energy, Elsevier, vol. 160(C), pages 49-57.
    5. Ding, Yanming & Huang, Biqing & Wu, Chuanbao & He, Qize & Lu, Kaihua, 2019. "Kinetic model and parameters study of lignocellulosic biomass oxidative pyrolysis," Energy, Elsevier, vol. 181(C), pages 11-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mumbach, Guilherme Davi & Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Domenico, Michele Di & Arias, Santiago & Pacheco, Jose Geraldo A. & Marangoni, Cintia & Machado, Ricardo Anton, 2022. "Prospecting pecan nutshell pyrolysis as a source of bioenergy and bio-based chemicals using multicomponent kinetic modeling, thermodynamic parameters estimation, and Py-GC/MS analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Kaabinejadian, Amirreza & Maghsoudi, Peyman & Homayounpour, Mohammad Mehdi & Sadeghi, Sadegh & Bidabadi, Mehdi & Xu, Fei, 2020. "Mathematical modeling of multi-region premixed combustion of moist bamboo particles," Renewable Energy, Elsevier, vol. 162(C), pages 1618-1628.
    3. Min Ho Kim & Hyun Jeong Seo & Sang Kyu Lee & Min Chul Lee, 2021. "Influence of Thermal Aging on the Combustion Characteristics of Cables in Nuclear Power Plants," Energies, MDPI, vol. 14(7), pages 1-17, April.
    4. Qi, Zhenyao & Hu, Haowei & Ji, Jie, 2024. "Investigation on the burning behaviors of the combustible ceiling with the impingement of an incipient fire source," Energy, Elsevier, vol. 290(C).
    5. Xu, Li & Zhu, Zhongzhe & Li, Shengcai & Zhang, Youchao & Wang, Lei & Sun, Wanghu, 2023. "Pyrolysis characteristics and kinetic reaction parameters estimation of sassafras wood via thermogravimetric modeling calculation coupled with hybrid optimization methodology," Energy, Elsevier, vol. 263(PD).
    6. Liu, Xiaozhou & Zhu, Guangyu & Asim, Taimoor & Mishra, Rakesh, 2022. "Application of momentum flux method for the design of an α-shaped flame incinerator fueled with two-component solid waste," Energy, Elsevier, vol. 248(C).
    7. Nishu, & Tang, Songbiao & Mei, Wenjie & Yang, Juntao & Wang, Zhongming & Yang, Gaixiu, 2024. "Effect of anaerobic digestion pretreatment on pyrolysis of distillers’ grain: Product distribution, kinetics and thermodynamics analysis," Renewable Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Yanming & Huang, Biqing & Li, Kaiyuan & Du, Wenzhou & Lu, Kaihua & Zhang, Yansong, 2020. "Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis," Energy, Elsevier, vol. 195(C).
    2. Lingna Zhong & Juan Zhang & Yanming Ding, 2020. "Energy Utilization of Algae Biomass Waste Enteromorpha Resulting in Green Tide in China: Pyrolysis Kinetic Parameters Estimation Based on Shuffled Complex Evolution," Sustainability, MDPI, vol. 12(5), pages 1-10, March.
    3. Haoyu Pan & Junhui Gong, 2023. "Application of Particle Swarm Optimization (PSO) Algorithm in Determining Thermodynamics of Solid Combustibles," Energies, MDPI, vol. 16(14), pages 1-16, July.
    4. Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
    5. Zhang, Wenlong & Zhang, Juan & Ding, Yanming & Zhou, Ru & Mao, Shaohua, 2022. "The accuracy of multiple methods for estimating the reaction order of representative thermoplastic polymers waste for energy utilization," Energy, Elsevier, vol. 239(PB).
    6. Korshunov, Alexey & Kichatov, Boris & Melnikova, Ksenia & Gubernov, Vladimir & Yakovenko, Ivan & Kiverin, Alexey & Golubkov, Alexandr, 2019. "Pyrolysis characteristics of biomass torrefied in a quiescent mineral layer," Energy, Elsevier, vol. 187(C).
    7. Jie Gu & Cheng Tung Chong & Guo Ren Mong & Jo-Han Ng & William Woei Fong Chong, 2023. "Determination of Pyrolysis and Kinetics Characteristics of Chicken Manure Using Thermogravimetric Analysis Coupled with Particle Swarm Optimization," Energies, MDPI, vol. 16(4), pages 1-22, February.
    8. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    9. Hillig, Débora Moraes & Pohlmann, Juliana Gonçalves & Manera, Christian & Perondi, Daniele & Pereira, Fernando Marcelo & Altafini, Carlos Roberto & Godinho, Marcelo, 2020. "Evaluation of the structural changes of a char produced by slow pyrolysis of biomass and of a high-ash coal during its combustion and their role in the reactivity and flue gas emissions," Energy, Elsevier, vol. 202(C).
    10. Kuan, Yong-Hao & Wu, Fang-Hsien & Chen, Guan-Bang & Lin, Hsien-Tsung & Lin, Ta-Hui, 2020. "Study of the combustion characteristics of sewage sludge pyrolysis oil, heavy fuel oil, and their blends," Energy, Elsevier, vol. 201(C).
    11. Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    12. Mau, Vivian & Gross, Amit, 2018. "Energy conversion and gas emissions from production and combustion of poultry-litter-derived hydrochar and biochar," Applied Energy, Elsevier, vol. 213(C), pages 510-519.
    13. Wu, C.B. & Guan, P.B. & Zhong, L.N. & Lv, J. & Hu, X.F. & Huang, G.H. & Li, C.C., 2020. "An optimized low-carbon production planning model for power industry in coal-dependent regions - A case study of Shandong, China," Energy, Elsevier, vol. 192(C).
    14. Xianhui Mao & Ankui Hu & Rui Zhao & Fei Wang & Mengkun Wu, 2023. "Evaluation and Application of Surrounding Rock Stability Based on an Improved Fuzzy Comprehensive Evaluation Method," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    15. Shi, Kaiqi & Oladejo, Jumoke Mojisola & Yan, Jiefeng & Wu, Tao, 2019. "Investigation on the interactions among lignocellulosic constituents and minerals of biomass and their influences on co-firing," Energy, Elsevier, vol. 179(C), pages 129-137.
    16. Salina, Fernando Henriques & Molina, Felipe Braggio & Gallego, Antonio Garrido & Palacios-Bereche, Reynaldo, 2021. "Fast pyrolysis of sugarcane straw and its integration into the conventional ethanol production process through Pinch Analysis," Energy, Elsevier, vol. 215(PA).
    17. Safar, Michal & Lin, Bo-Jhih & Chen, Wei-Hsin & Langauer, David & Chang, Jo-Shu & Raclavska, H. & Pétrissans, Anélie & Rousset, Patrick & Pétrissans, Mathieu, 2019. "Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction," Applied Energy, Elsevier, vol. 235(C), pages 346-355.
    18. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    19. Ding, Yanming & Chen, Wenlu & Zhang, Wenlong & Zhang, Xueting & Li, Changhai & Zhou, Ru & Miao, Fasheng, 2022. "Experimental and numerical simulation study of typical semi-transparent material pyrolysis with in-depth radiation based on micro and bench scales," Energy, Elsevier, vol. 258(C).
    20. Zou, Songchun & Zhao, Wanzhong, 2020. "Energy optimization strategy of vehicle DCS system based on APSO algorithm," Energy, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.