IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v176y2019icp582-588.html
   My bibliography  Save this article

The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis

Author

Listed:
  • Ding, Yanming
  • Zhang, Wenlong
  • Yu, Lei
  • Lu, Kaihua

Abstract

Reaction kinetic parameters estimation of biomass pyrolysis is a relatively difficult optimization problem due to the complexity of pyrolysis model. Two common heuristic algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), are applied to estimate the kinetic parameters of three-component parallel reaction mechanism based on the thermogravimetric experiment in wide heating rates. The accuracy and efficiency of GA and PSO algorithms are compared with each other under the identical optimization conditions. The results indicate the better optimization abilities of PSO with the closer convergence solution to the global optimum and quicker convergence to the solution than GA based on the three-component parallel reaction mechanism of biomass pyrolysis. Especially, the improvement of best fitting value of PSO reaches up to 30% compared with that of GA. Furthermore, 14 estimated kinetic parameters of best fitting value are obtained and the mass loss rate predicted results including three separate components (hemicellulose, cellulose and lignin) are compared with experimental data.

Suggested Citation

  • Ding, Yanming & Zhang, Wenlong & Yu, Lei & Lu, Kaihua, 2019. "The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis," Energy, Elsevier, vol. 176(C), pages 582-588.
  • Handle: RePEc:eee:energy:v:176:y:2019:i:c:p:582-588
    DOI: 10.1016/j.energy.2019.04.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421930653X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharma, Rajeev & Sheth, Pratik N., 2018. "Multi reaction apparent kinetic scheme for the pyrolysis of large size biomass particles using macro-TGA," Energy, Elsevier, vol. 151(C), pages 1007-1017.
    2. Navarro, M.V. & López, J.M. & Veses, A. & Callén, M.S. & García, T., 2018. "Kinetic study for the co-pyrolysis of lignocellulosic biomass and plastics using the distributed activation energy model," Energy, Elsevier, vol. 165(PA), pages 731-742.
    3. Nzihou, Ange & Stanmore, Brian & Lyczko, Nathalie & Minh, Doan Pham, 2019. "The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review," Energy, Elsevier, vol. 170(C), pages 326-337.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Junfang & Liu, Jiaxun & Jiang, Xiumin & Zhang, Hai, 2021. "A two-dimensional distributed activation energy model for pyrolysis of solid fuels," Energy, Elsevier, vol. 230(C).
    2. Wen, Yuming & Zaini, Ilman Nuran & Wang, Shule & Mu, Wangzhong & Jönsson, Pär Göran & Yang, Weihong, 2021. "Synergistic effect of the co-pyrolysis of cardboard and polyethylene: A kinetic and thermodynamic study," Energy, Elsevier, vol. 229(C).
    3. Li, Chao & Sun, Yifan & Yi, Zijun & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2022. "Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties," Renewable Energy, Elsevier, vol. 181(C), pages 1126-1139.
    4. Yu Ji & Qiang Yao & Weihong Cao & Yueying Zhao, 2021. "A Probable Origin of Dibenzothiophenes in Coals and Oils," Energies, MDPI, vol. 14(1), pages 1-16, January.
    5. Long, Jimiao & Deng, Lei & Che, Defu, 2020. "Analysis on organic compounds in water leachate from biomass," Renewable Energy, Elsevier, vol. 155(C), pages 1070-1078.
    6. Gu, Tianbao & Fu, Zhufu & Berning, Torsten & Li, Xuantian & Yin, Chungen, 2021. "A simplified kinetic model based on a universal description for solid fuels pyrolysis: Theoretical derivation, experimental validation, and application demonstration," Energy, Elsevier, vol. 225(C).
    7. Abdullahi Shagali, Abdulmajid & Hu, Song & Li, Hanjian & He, Limo & Han, Hengda & Chi, Huanying & Qing, Haoran & Xu, Jun & Jiang, Long & Wang, Yi & Su, Sheng & Xiang, Jun, 2023. "Synergistic interactions and co-pyrolysis characteristics of lignocellulosic biomass components and plastic using a fast heating concentrating photothermal TGA system," Renewable Energy, Elsevier, vol. 215(C).
    8. Ghulamullah Maitlo & Imran Ali & Hubdar Ali Maitlo & Safdar Ali & Imran Nazir Unar & Muhammad Bilal Ahmad & Darya Khan Bhutto & Ramesh Kumar Karmani & Shamim ur Rehman Naich & Raja Umer Sajjad & Sikan, 2022. "Plastic Waste Recycling, Applications, and Future Prospects for a Sustainable Environment," Sustainability, MDPI, vol. 14(18), pages 1-27, September.
    9. Branca, Carmen & Galgano, Antonio & Di Blasi, Colomba, 2023. "Dynamics and products of potato crop residue conversion under a pyrolytic runaway regime - Influences of feedstock variability," Energy, Elsevier, vol. 276(C).
    10. Choi, Byungchul & Kim, Cheolho & Yang, Seongsu & Lee, Sejin & Kim, Moonyong & Byun, Sungchun & Jung, Gyeong-gap, 2020. "Effective components on explosive combustion characteristics of wood charcoals," Energy, Elsevier, vol. 197(C).
    11. Vikraman, V. Karuppasamy & Boopathi, G. & Kumar, D. Praveen & Mythili, R. & Subramanian, P., 2021. "Non-isothermal pyrolytic kinetics of milk dust powder using thermogravimetric analysis," Renewable Energy, Elsevier, vol. 180(C), pages 838-849.
    12. Zeng, Kuo & Li, Rui & Minh, Doan Pham & Weiss-Hortala, Elsa & Nzihou, Ange & Zhong, Dian & Flamant, Gilles, 2020. "Characterization of char generated from solar pyrolysis of heavy metal contaminated biomass," Energy, Elsevier, vol. 206(C).
    13. Fan, Yongsheng & Zhu, Mengfeng & Jin, Lizhu & Cui, Entian & Zhu, Lei & Cai, Yixi & Zhao, Weidong, 2020. "Catalytic upgrading of biomass-derived vapors to bio-fuels via modified HZSM-5 coupled with DBD: Effects of different titanium sources," Renewable Energy, Elsevier, vol. 157(C), pages 100-115.
    14. Baena-Moreno, Francisco M. & Gonzalez-Castaño, Miriam & Arellano-García, Harvey & Reina, T.R., 2021. "Exploring profitability of bioeconomy paths: Dimethyl ether from biogas as case study," Energy, Elsevier, vol. 225(C).
    15. Yan, Xianyao & Li, Yingjie & Ma, Xiaotong & Bian, Zhiguo & Zhao, Jianli & Wang, Zeyan, 2020. "CeO2-modified CaO/Ca12Al14O33 bi-functional material for CO2 capture and H2 production in sorption-enhanced steam gasification of biomass," Energy, Elsevier, vol. 192(C).
    16. Wardach-Świȩcicka, Izabela & Kardaś, Dariusz, 2021. "Modelling thermal behaviour of a single solid particle pyrolysing in a hot gas flow," Energy, Elsevier, vol. 221(C).
    17. Li, Qingyin & Lin, Haisheng & Fan, Huailin & Zhang, Shu & Yuan, Xiangzhou & Wang, Yi & Xiang, Jun & Hu, Song & Bkangmo Kontchouo, Félix Mérimé & Hu, Xun, 2021. "Co-pyrolysis of swine manure and pinewood sawdust: Evidence of cross-interaction of the volatiles and profound impacts on product characteristics," Renewable Energy, Elsevier, vol. 179(C), pages 1370-1384.
    18. Luo, Wei & Hu, Qing & Fan, Zhong-yi & Wan, Jun & He, Qian & Huang, Sheng-xiong & Zhou, Nan & Song, Min & Zhang, Jia-chao & Zhou, Zhi, 2020. "The effect of different particle sizes and HCl-modified kaolin on catalytic pyrolysis characteristics of reworked polypropylene plastics," Energy, Elsevier, vol. 213(C).
    19. Zhu, Haodong & Yi, Baojun & Hu, Hongyun & Fan, Qizhou & Wang, Hao & Yao, Hong, 2021. "The effects of char and potassium on the fast pyrolysis behaviors of biomass in an infrared-heating condition," Energy, Elsevier, vol. 214(C).
    20. Ding, Yanming & Huang, Biqing & Wu, Chuanbao & He, Qize & Lu, Kaihua, 2019. "Kinetic model and parameters study of lignocellulosic biomass oxidative pyrolysis," Energy, Elsevier, vol. 181(C), pages 11-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:176:y:2019:i:c:p:582-588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.