IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v206y2020ics0360544220312354.html
   My bibliography  Save this article

Characterization of char generated from solar pyrolysis of heavy metal contaminated biomass

Author

Listed:
  • Zeng, Kuo
  • Li, Rui
  • Minh, Doan Pham
  • Weiss-Hortala, Elsa
  • Nzihou, Ange
  • Zhong, Dian
  • Flamant, Gilles

Abstract

Solar pyrolysis of raw and heavy metals (HMs) impregnated willow was performed at different temperatures (600, 800, 1000, 1200, 1400 and 1600 °C) with heating rate of 50 °C/s. CHNS, ICP-OES, SEM-EDX and BET were employed to investigate the effects of temperature and HMs contamination on char properties. The results indicated that a more ordered and aromatic char was formed with increasing pyrolysis temperature. Char carbon contents increased from 70.0% to 88.4% while hydrogen and oxygen contents declined. Char BET surface area firstly increased from 5.3 to 161.0 m2/g with rising the temperature from 600 to 1000 °C, then decreased at higher temperatures due to plastic deformation. Pyrolysis caused alkali and alkaline-earth metals (A&AEMs) enrichment in char as temperature increased from 600 to 800 °C, then their content decreased at higher temperatures. The presence of Cu or Ni led to the decrease of hydrogen and oxygen contents and significant increase of Ni or Cu in char compared with those in raw willow char. Besides, Raman and BET analysis showed that contaminated willow char had a higher ratio of G band area to the integrated area (IG/IAll) and bigger BET surface area than raw material indicating a more organized and porous structure of the char.

Suggested Citation

  • Zeng, Kuo & Li, Rui & Minh, Doan Pham & Weiss-Hortala, Elsa & Nzihou, Ange & Zhong, Dian & Flamant, Gilles, 2020. "Characterization of char generated from solar pyrolysis of heavy metal contaminated biomass," Energy, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312354
    DOI: 10.1016/j.energy.2020.118128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220312354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Kuo & Gauthier, Daniel & Li, Rui & Flamant, Gilles, 2017. "Combined effects of initial water content and heating parameters on solar pyrolysis of beech wood," Energy, Elsevier, vol. 125(C), pages 552-561.
    2. Zeng, Kuo & Li, Rui & Minh, Doan Pham & Weiss-Hortala, Elsa & Nzihou, Ange & He, Xiao & Flamant, Gilles, 2019. "Solar pyrolysis of heavy metal contaminated biomass for gas fuel production," Energy, Elsevier, vol. 187(C).
    3. He, Xiao & Zeng, Kuo & Xie, Yingpu & Flamant, Gilles & Yang, Haiping & Yang, Xinyi & Nzihou, Ange & Zheng, Anqing & Ding, Zhi & Chen, Hanping, 2019. "The effects of temperature and molten salt on solar pyrolysis of lignite," Energy, Elsevier, vol. 181(C), pages 407-416.
    4. Nzihou, Ange & Stanmore, Brian & Lyczko, Nathalie & Minh, Doan Pham, 2019. "The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review," Energy, Elsevier, vol. 170(C), pages 326-337.
    5. Zeng, Kuo & Gauthier, Daniel & Li, Rui & Flamant, Gilles, 2015. "Solar pyrolysis of beech wood: Effects of pyrolysis parameters on the product distribution and gas product composition," Energy, Elsevier, vol. 93(P2), pages 1648-1657.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sobek, S. & Zeng, K. & Werle, S. & Junga, R. & Sajdak, M., 2022. "Brewer's spent grain pyrolysis kinetics and evolved gas analysis for the sustainable phenolic compounds and fatty acids recovery potential," Renewable Energy, Elsevier, vol. 199(C), pages 157-168.
    2. Hamed, A.S.A. & Yusof, N.I.F.M. & Yahya, M.S. & Cardozo, E. & Munajat, N.F., 2023. "Concentrated solar pyrolysis for oil palm biomass: An exploratory review within the Malaysian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Tian, Bin & Zhao, Wanyi & Guo, Qingjie & Tian, Yuanyu, 2022. "A comprehensive understanding of synergetic effect and volatile interaction mechanisms during co-pyrolysis of rice husk and different rank coals," Energy, Elsevier, vol. 254(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Kuo & Li, Rui & Minh, Doan Pham & Weiss-Hortala, Elsa & Nzihou, Ange & He, Xiao & Flamant, Gilles, 2019. "Solar pyrolysis of heavy metal contaminated biomass for gas fuel production," Energy, Elsevier, vol. 187(C).
    2. Xie, Yingpu & Zeng, Kuo & Flamant, Gilles & Yang, Haiping & Liu, Nian & He, Xiao & Yang, Xinyi & Nzihou, Ange & Chen, Hanping, 2019. "Solar pyrolysis of cotton stalk in molten salt for bio-fuel production," Energy, Elsevier, vol. 179(C), pages 1124-1132.
    3. Chintala, Venkateswarlu, 2018. "Production, upgradation and utilization of solar assisted pyrolysis fuels from biomass – A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 120-130.
    4. Hamed, A.S.A. & Yusof, N.I.F.M. & Yahya, M.S. & Cardozo, E. & Munajat, N.F., 2023. "Concentrated solar pyrolysis for oil palm biomass: An exploratory review within the Malaysian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Kaczor, Zuzanna & Buliński, Zbigniew & Werle, Sebastian, 2020. "Modelling approaches to waste biomass pyrolysis: a review," Renewable Energy, Elsevier, vol. 159(C), pages 427-443.
    6. Marcus P. B. Martins & Carla E. Hori & Marcos A. S. Barrozo & Luiz G. M. Vieira, 2022. "Solar Pyrolysis of Spirulina platensis Assisted by Fresnel Lens Using Hydrocalumite-Type Precursors," Energies, MDPI, vol. 15(20), pages 1-19, October.
    7. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    8. Yu Ji & Qiang Yao & Weihong Cao & Yueying Zhao, 2021. "A Probable Origin of Dibenzothiophenes in Coals and Oils," Energies, MDPI, vol. 14(1), pages 1-16, January.
    9. Wei, Yi & Lu, Licong & Zhang, Xudong & Ji, Jianbing, 2022. "Hydrogen produced at low temperatures by electrochemically assisted pyrolysis of cellulose in molten carbonate," Energy, Elsevier, vol. 254(PC).
    10. Long, Jimiao & Deng, Lei & Che, Defu, 2020. "Analysis on organic compounds in water leachate from biomass," Renewable Energy, Elsevier, vol. 155(C), pages 1070-1078.
    11. Cesare Caputo & Ondřej Mašek, 2021. "SPEAR (Solar Pyrolysis Energy Access Reactor): Theoretical Design and Evaluation of a Small-Scale Low-Cost Pyrolysis Unit for Implementation in Rural Communities," Energies, MDPI, vol. 14(8), pages 1-27, April.
    12. Gu, Tianbao & Fu, Zhufu & Berning, Torsten & Li, Xuantian & Yin, Chungen, 2021. "A simplified kinetic model based on a universal description for solid fuels pyrolysis: Theoretical derivation, experimental validation, and application demonstration," Energy, Elsevier, vol. 225(C).
    13. Zeng, Kuo & Soria, José & Gauthier, Daniel & Mazza, Germán & Flamant, Gilles, 2016. "Modeling of beech wood pellet pyrolysis under concentrated solar radiation," Renewable Energy, Elsevier, vol. 99(C), pages 721-729.
    14. Branca, Carmen & Galgano, Antonio & Di Blasi, Colomba, 2023. "Dynamics and products of potato crop residue conversion under a pyrolytic runaway regime - Influences of feedstock variability," Energy, Elsevier, vol. 276(C).
    15. Zeng, Kuo & Li, Jun & Xie, Yingpu & Yang, Haiping & Yang, Xinyi & Zhong, Dian & Zhen, Wanxin & Flamant, Gilles & Chen, Hanping, 2020. "Molten salt pyrolysis of biomass: The mechanism of volatile reforming and pyrolysis," Energy, Elsevier, vol. 213(C).
    16. Fan, Yongsheng & Zhu, Mengfeng & Jin, Lizhu & Cui, Entian & Zhu, Lei & Cai, Yixi & Zhao, Weidong, 2020. "Catalytic upgrading of biomass-derived vapors to bio-fuels via modified HZSM-5 coupled with DBD: Effects of different titanium sources," Renewable Energy, Elsevier, vol. 157(C), pages 100-115.
    17. Baena-Moreno, Francisco M. & Gonzalez-Castaño, Miriam & Arellano-García, Harvey & Reina, T.R., 2021. "Exploring profitability of bioeconomy paths: Dimethyl ether from biogas as case study," Energy, Elsevier, vol. 225(C).
    18. Yan, Xianyao & Li, Yingjie & Ma, Xiaotong & Bian, Zhiguo & Zhao, Jianli & Wang, Zeyan, 2020. "CeO2-modified CaO/Ca12Al14O33 bi-functional material for CO2 capture and H2 production in sorption-enhanced steam gasification of biomass," Energy, Elsevier, vol. 192(C).
    19. Rahman, M.A., 2020. "Valorizing of weeds algae through the solar assisted pyrolysis: Effects of dependable parameters on yields and characterization of products," Renewable Energy, Elsevier, vol. 147(P1), pages 937-946.
    20. Haojie Gao & Zhisong Wen & Lizhu Jin & Xin Xiong & Yuezhao Zhu, 2022. "Gasification Characteristics of High Moisture Content Lignite under CO 2 and Auto-Generated Steam Atmosphere in a Moving Bed Tubular Reactor," Energies, MDPI, vol. 15(18), pages 1-10, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.