IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v248y2022ics0360544222005503.html
   My bibliography  Save this article

Application of momentum flux method for the design of an α-shaped flame incinerator fueled with two-component solid waste

Author

Listed:
  • Liu, Xiaozhou
  • Zhu, Guangyu
  • Asim, Taimoor
  • Mishra, Rakesh

Abstract

Kitchen waste and tree branches are two of the most common solid waste materials suitable for on-site disposal. Quantification of combustion characteristics of these waste materials is vital for designing an appropriate incinerator. In this paper, the combustion characteristics of a mixture of kitchen waste and tree branches have been analyzed. As the theoretical basis for the design of incinerator arches is severely limited in the published literature, a novel momentum flux methodology for designing α-shaped flame arches has been developed for the disposal and combustion of two-component solid waste. For this purpose, orthogonal experimental design methodology has been employed for eight different operating conditions of the incinerator. The theoretical results have been verified by cold-state experiments, resulting in the development of a novel small-scale, α-shaped flame incinerator fueled with kitchen waste and tree branches. Cold-state experimental results show that the optimum dimensionless structural parameters of the furnace arches are H1/L of 0.3, H/L of 0.5 and h/L of 0.15, with the front arch angle of 45° and the rear arch angle of 12°. For full-scale validity and commercial viability of the novel incinerator, hot-state tests have been conducted in this study.

Suggested Citation

  • Liu, Xiaozhou & Zhu, Guangyu & Asim, Taimoor & Mishra, Rakesh, 2022. "Application of momentum flux method for the design of an α-shaped flame incinerator fueled with two-component solid waste," Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222005503
    DOI: 10.1016/j.energy.2022.123647
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222005503
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Di & Wei, Rufei & Long, Hongming & Li, Jiaxin & Qi, Liying & Xu, Chunbao Charles, 2020. "Combustion characteristics and kinetics of different food solid wastes treatment by blast furnace," Renewable Energy, Elsevier, vol. 145(C), pages 530-541.
    2. Huseyin Kurtulus Ozcan & Senem Yazici Guvenc & Lokman Guvenc & Goksel Demir, 2016. "Municipal Solid Waste Characterization According to Different Income Levels: A Case Study," Sustainability, MDPI, vol. 8(10), pages 1-11, October.
    3. Ching-Hsu Huang & Shih-Min Liu & Nai-Yun Hsu, 2020. "Understanding Global Food Surplus and Food Waste to Tackle Economic and Environmental Sustainability," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    4. Shi, Yan & Ge, Ying & Chang, Jie & Shao, Hongbo & Tang, Yuli, 2013. "Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 432-437.
    5. Al Asfar, Jamil & AlShwawra, Ahmad & Shaban, Nabeel Abu & Alrbai, Mohammad & Qawasmeh, Bashar R. & Sakhrieh, Ahmad & Hamdan, Mohammad A. & Odeh, Omar, 2020. "Thermodynamic analysis of a biomass-fired lab-scale power plant," Energy, Elsevier, vol. 194(C).
    6. Xu, Li & Li, Shengcai & Sun, Wanghu & Ma, Xin & Cao, Shuchao, 2020. "Combustion behaviors and characteristic parameters determination of sassafras wood under different heating conditions," Energy, Elsevier, vol. 203(C).
    7. Zadravec, Tomas & Yin, Chungen & Kokalj, Filip & Samec, Niko & Rajh, Boštjan, 2020. "The impacts of different profiles of the grate inlet conditions on freeboard CFD in a waste wood-fired grate boiler," Applied Energy, Elsevier, vol. 268(C).
    8. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.
    9. Kaabinejadian, Amirreza & Maghsoudi, Peyman & Homayounpour, Mohammad Mehdi & Sadeghi, Sadegh & Bidabadi, Mehdi & Xu, Fei, 2020. "Mathematical modeling of multi-region premixed combustion of moist bamboo particles," Renewable Energy, Elsevier, vol. 162(C), pages 1618-1628.
    10. Liu, Xiaozhou & Zhu, Guangyu & Asim, Taimoor & Zhang, Yu & Mishra, Rakesh, 2021. "The innovative design of air caps for improving the thermal efficiency of CFB boilers," Energy, Elsevier, vol. 221(C).
    11. Li, Zhengqi & Liu, Guangkui & Chen, Zhichao & Zeng, Lingyan & Zhu, Qunyi, 2013. "Effect of angle of arch-supplied overfire air on flow, combustion characteristics and NOx emissions of a down-fired utility boiler," Energy, Elsevier, vol. 59(C), pages 377-386.
    12. Jianfei, Yang & Zixing, Feng & Liangmeng, Ni & Qi, Gao & Zhijia, Liu, 2020. "Combustion characteristics of bamboo lignin from kraft pulping: Influence of washing process," Renewable Energy, Elsevier, vol. 162(C), pages 525-534.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Yi & Deng, Yawen & Wang, Guoan & Xu, Jiuping, 2020. "Stackelberg equilibrium-based eco-economic approach for sustainable development of kitchen waste disposal with subsidy policy: A case study from China," Energy, Elsevier, vol. 196(C).
    2. Mo, Qianci & Zhu, Xishan & Deng, Chenquan & Cen, Shuhai & Ye, Haibo & Wang, Chunqiang & Lu, Wei & Chen, Xiaojun & Lin, Xingsu, 2023. "Analysis on influencing factors and improvement of thermal efficiency of bagasse boilers based on performance test data," Energy, Elsevier, vol. 271(C).
    3. Wansoo Kim & Chen Che & Chul Jeong, 2022. "Food Waste Reduction from Customers’ Plates: Applying the Norm Activation Model in South Korean Context," Land, MDPI, vol. 11(1), pages 1-14, January.
    4. Ma, Junfang & Liu, Jiaxun & Jiang, Xiumin & Zhang, Hai, 2021. "A two-dimensional distributed activation energy model for pyrolysis of solid fuels," Energy, Elsevier, vol. 230(C).
    5. Paul Taboada-González & Quetzalli Aguilar-Virgen & Liliana Márquez-Benavides, 2017. "Recyclables Valorisation as the Best Strategy for Achieving Landfill CO 2 e Emissions Abatement from Domestic Waste: Game Theory," Sustainability, MDPI, vol. 9(7), pages 1-10, July.
    6. Mariarosaria Lombardi & Marco Costantino, 2021. "A Hierarchical Pyramid for Food Waste Based on a Social Innovation Perspective," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    7. Faisal A. Osra & Huseyin Kurtulus Ozcan & Jaber S. Alzahrani & Mohammad S. Alsoufi, 2021. "Municipal Solid Waste Characterization and Landfill Gas Generation in Kakia Landfill, Makkah," Sustainability, MDPI, vol. 13(3), pages 1-13, January.
    8. Siwal, Samarjeet Singh & Zhang, Qibo & Devi, Nishu & Saini, Adesh Kumar & Saini, Vipin & Pareek, Bhawna & Gaidukovs, Sergejs & Thakur, Vijay Kumar, 2021. "Recovery processes of sustainable energy using different biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Maria Triassi & Bruna De Simone & Paolo Montuori & Immacolata Russo & Elvira De Rosa & Fabiana Di Duca & Claudio Crivaro & Vittorio Cerullo & Patrizia Pontillo & Sergi Díez, 2023. "Determination of Residual Municipal Solid Waste Composition from Rural and Urban Areas: A Step toward the Optimization of a Waste Management System for Efficient Material Recovery," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    10. Peng Zhang & Guojin Qin & Yihuan Wang, 2019. "Risk Assessment System for Oil and Gas Pipelines Laid in One Ditch Based on Quantitative Risk Analysis," Energies, MDPI, vol. 12(6), pages 1-21, March.
    11. Zhang, Hongmei & Chen, Zhengjie & Ma, Wenhui & Cao, Shijie, 2022. "Effect of the reactive blend conditions on the thermal properties of waste biomass and soft coal as a reducing agent for silicon production," Renewable Energy, Elsevier, vol. 187(C), pages 302-319.
    12. Shi, Yi & Xu, Jiuping, 2023. "A multi-objective approach to kitchen waste and excess sludge co-digestion for biomethane production with anaerobic digestion," Energy, Elsevier, vol. 262(PA).
    13. Shuang Liu & Wenzhe Li & Guoxiang Zheng & Haiyan Yang & Longhai Li, 2020. "Optimization of Cattle Manure and Food Waste Co-Digestion for Biohydrogen Production in a Mesophilic Semi-Continuous Process," Energies, MDPI, vol. 13(15), pages 1-13, July.
    14. Yujie Pan & Ke Peng & Hongxia Peng & Jing Zhang & Min Zeng & Changsheng Huang, 2019. "Evaluation Model and Empirical Study on the Competitiveness of the County Silicon Crystal Industry," Sustainability, MDPI, vol. 11(19), pages 1-15, September.
    15. Rajesh Kumar Rai & Mani Nepal & Madan Singh Khadayat & Bishal Bhardwaj, 2019. "Improving Municipal Solid Waste Collection Services in Developing Countries: A Case of Bharatpur Metropolitan City, Nepal," Sustainability, MDPI, vol. 11(11), pages 1-17, May.
    16. Jian Yang & Zhenying Li & Rufei Wei & Di Zhou & Hongming Long & Jiaxin Li & Chunbao (Charles) Xu, 2022. "Co-Combustion of Food Solid Wastes and Pulverized Coal for Blast Furnace Injection: Characteristics, Kinetics, and Superiority," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
    17. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.
    18. Bishal Baniya, 2023. "Circularity in Facility Management: Conceptualisation and Potential Areas for Circularity-Oriented Actions," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
    19. Darbandi, Masoud & Fatin, Ali & Bordbar, Hadi, 2020. "Numerical study on NOx reduction in a large-scale heavy fuel oil-fired boiler using suitable burner adjustments," Energy, Elsevier, vol. 199(C).
    20. Mumbach, Guilherme Davi & Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Domenico, Michele Di & Arias, Santiago & Pacheco, Jose Geraldo A. & Marangoni, Cintia & Machado, Ricardo Anton, 2022. "Prospecting pecan nutshell pyrolysis as a source of bioenergy and bio-based chemicals using multicomponent kinetic modeling, thermodynamic parameters estimation, and Py-GC/MS analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222005503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.