IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics036054422500550x.html
   My bibliography  Save this article

Thermal characteristics and slagging-fouling analysis in co-combustion of coal and oil palm waste mixtures

Author

Listed:
  • Prayoga, Moch Zulfikar Eka
  • Putra, Hanafi Prida
  • Wargadalam, Verina Januati
  • Surachman, Hadi
  • Luktyansyah, Insyiah Meida
  • Saudah, Siti
  • Darmawan, Arif
  • Aziz, Muhammad
  • Prabowo, Prabowo
  • Wang, Yibin
  • Vuthaluru, Hari B.
  • Hariana, Hariana

Abstract

This research investigates the co-combustion of oil palm biomasses with coal, focusing on their thermal characteristics and the risks of slagging and fouling. The palm oil biomass includes empty fruit bunches (EFB), fronds (FRD), and leaves (LVS), which are underutilized as energy sources. These biomass wastes are blended with low-rank coal (LRC) and medium-rank coal (MRC) to ensure sustainable fuel supply and cost-effective operations. A comprehensive approach involving laboratory tests, combustion experiments, and theoretical analysis are used. The findings identify safe operational limits for slagging and fouling risks. The slagging tendency remains low, with a maximum accumulation of 25 % of elements like Fe, Na, and K and 20 % of minerals such as hematite and illite. Similarly, fouling risks are minimal, with a maximum of 10 % Na, K, and S and 20 % of anhydrite and illite minerals. The results suggest that palm waste mixtures can be used as boiler fuel at a maximum of 5 wt%, adhering to acceptable slagging and fouling limits. This study provides valuable insights into the practical use of biomass blends for co-firing, particularly in East Kalimantan, which contributes to sustainable energy solutions.

Suggested Citation

  • Prayoga, Moch Zulfikar Eka & Putra, Hanafi Prida & Wargadalam, Verina Januati & Surachman, Hadi & Luktyansyah, Insyiah Meida & Saudah, Siti & Darmawan, Arif & Aziz, Muhammad & Prabowo, Prabowo & Wang,, 2025. "Thermal characteristics and slagging-fouling analysis in co-combustion of coal and oil palm waste mixtures," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s036054422500550x
    DOI: 10.1016/j.energy.2025.134908
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422500550X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hariana, & Putra, Hanafi Prida & Prabowo, & Hilmawan, Edi & Darmawan, Arif & Mochida, Keiichi & Aziz, Muhammad, 2023. "Theoretical and experimental investigation of ash-related problems during coal co-firing with different types of biomass in a pulverized coal-fired boiler," Energy, Elsevier, vol. 269(C).
    2. Link, Siim & Arvelakis, Stelios & Paist, Aadu & Martin, Andrew & Liliedahl, Truls & Sjöström, Krister, 2012. "Atmospheric fluidized bed gasification of untreated and leached olive residue, and co-gasification of olive residue, reed, pine pellets and Douglas fir wood chips," Applied Energy, Elsevier, vol. 94(C), pages 89-97.
    3. Garcia, Eduardo & Liu, Hao, 2022. "Ilmenite as alternative bed material for the combustion of coal and biomass blends in a fluidised bed combustor to improve combustion performance and reduce agglomeration tendency," Energy, Elsevier, vol. 239(PA).
    4. Luo, S.Y. & Xiao, B. & Hu, Z.Q. & Liu, S.M. & Guan, Y.W., 2009. "Experimental study on oxygen-enriched combustion of biomass micro fuel," Energy, Elsevier, vol. 34(11), pages 1880-1884.
    5. Reinmöller, Markus & Schreiner, Marcus & Laabs, Marcel & Scharm, Christoph & Yao, Zhitong & Guhl, Stefan & Neuroth, Manuela & Meyer, Bernd & Gräbner, Martin, 2023. "Formation and transformation of mineral phases in biomass ashes and evaluation of the feedstocks for application in high-temperature processes," Renewable Energy, Elsevier, vol. 210(C), pages 627-639.
    6. Xu, Jiuping & Huang, Qian & Lv, Chengwei & Feng, Qing & Wang, Fengjuan, 2018. "Carbon emissions reductions oriented dynamic equilibrium strategy using biomass-coal co-firing," Energy Policy, Elsevier, vol. 123(C), pages 184-197.
    7. Lu, Jau-Jang & Chen, Wei-Hsin, 2015. "Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis," Applied Energy, Elsevier, vol. 160(C), pages 49-57.
    8. Míguez, José Luis & Porteiro, Jacobo & Behrendt, Frank & Blanco, Diana & Patiño, David & Dieguez-Alonso, Alba, 2021. "Review of the use of additives to mitigate operational problems associated with the combustion of biomass with high content in ash-forming species," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Wang, Yanhong & Cao, Lihua & Li, Xingcan & Wang, Jiaxing & Hu, Pengfei & Li, Bo & Li, Yong, 2020. "A novel thermodynamic method and insight of heat transfer characteristics on economizer for supercritical thermal power plant," Energy, Elsevier, vol. 191(C).
    10. Das, Samar & Sarkar, Pranay Kumar & Mahapatra, Sadhan, 2021. "Single particle combustion studies of coal/biomass fuel mixtures," Energy, Elsevier, vol. 217(C).
    11. Nabila, Rakhmawati & Hidayat, Wahyu & Haryanto, Agus & Hasanudin, Udin & Iryani, Dewi Agustina & Lee, Sihyun & Kim, Sangdo & Kim, Soohyun & Chun, Donghyuk & Choi, Hokyung & Im, Hyuk & Lim, Jeonghwan &, 2023. "Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghazidin, Hafizh & Suyatno, Suyatno & Prismantoko, Adi & Ruhiyat, Ade Sana & Prabowo, & Darmawan, Arif & Soleh, Mochamad & Aziz, Amiral & Asmanto, Puji & Vuthaluru, Hari & Wang, Yibin & Yurismono, Har, 2025. "Control of slagging and fouling during co-firing of solid recovered fuel and high-sodium coal using aluminum and magnesium-based additives," Energy, Elsevier, vol. 318(C).
    2. Santos, Carolina Monteiro & de Oliveira, Leandro Soares & Alves Rocha, Elém Patrícia & Franca, Adriana Silva, 2020. "Thermal conversion of defective coffee beans for energy purposes: Characterization and kinetic modeling," Renewable Energy, Elsevier, vol. 147(P1), pages 1275-1291.
    3. Ma, Changhao & Tian, Haoyu & Ma, Yuchen & Du, Bingjun & Zhang, Yang & Lyu, Junfu & Ke, Xiwei, 2025. "Experimental investigation on the effect of iron-rich coal ash on biomass-volatile combustion characteristics in the fluidized bed," Energy, Elsevier, vol. 321(C).
    4. Leandro C. de Morais & Amanda A. Maia & Pedro R. Resende & André H. Rosa & Leonel J. R. Nunes, 2022. "Thermochemical Conversion of Sugarcane Bagasse: A Comprehensive Analysis of Ignition and Burnout Temperatures," Clean Technol., MDPI, vol. 4(4), pages 1-11, November.
    5. Hariana, & Ghazidin, Hafizh & Putra, Hanafi Prida & Darmawan, Arif & Prabowo, & Hilmawan, Edi & Aziz, Muhammad, 2023. "The effects of additives on deposit formation during co-firing of high-sodium coal with high-potassium and -chlorine biomass," Energy, Elsevier, vol. 271(C).
    6. Hariana, & Putra, Hanafi Prida & Prabowo, & Hilmawan, Edi & Darmawan, Arif & Mochida, Keiichi & Aziz, Muhammad, 2023. "Theoretical and experimental investigation of ash-related problems during coal co-firing with different types of biomass in a pulverized coal-fired boiler," Energy, Elsevier, vol. 269(C).
    7. Xu, Jiuping & Shu, Kejing & Wang, Fengjuan & Yang, Guocan, 2024. "Bi-level multi-objective distribution strategy integrating the permit trading scheme towards coal production capacity layout optimization: Case study from China," Resources Policy, Elsevier, vol. 91(C).
    8. Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & He, Zhaohong & Osaka, Yugo & Zeng, Tao, 2015. "Numerical study on effect of oxygen content in combustion air on ammonia combustion," Energy, Elsevier, vol. 93(P2), pages 2053-2068.
    9. Liu, Zhuo & Li, Jianbo & Long, Xiaofei & Lu, Xiaofeng, 2022. "Mechanisms and characteristics of ash layer formation on bed particles during circulating fluidized bed combustion of Zhundong lignite," Energy, Elsevier, vol. 245(C).
    10. Mo, Qianci & Zhu, Xishan & Deng, Chenquan & Cen, Shuhai & Ye, Haibo & Wang, Chunqiang & Lu, Wei & Chen, Xiaojun & Lin, Xingsu, 2023. "Analysis on influencing factors and improvement of thermal efficiency of bagasse boilers based on performance test data," Energy, Elsevier, vol. 271(C).
    11. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    12. Hillig, Débora Moraes & Pohlmann, Juliana Gonçalves & Manera, Christian & Perondi, Daniele & Pereira, Fernando Marcelo & Altafini, Carlos Roberto & Godinho, Marcelo, 2020. "Evaluation of the structural changes of a char produced by slow pyrolysis of biomass and of a high-ash coal during its combustion and their role in the reactivity and flue gas emissions," Energy, Elsevier, vol. 202(C).
    13. Kuan, Yong-Hao & Wu, Fang-Hsien & Chen, Guan-Bang & Lin, Hsien-Tsung & Lin, Ta-Hui, 2020. "Study of the combustion characteristics of sewage sludge pyrolysis oil, heavy fuel oil, and their blends," Energy, Elsevier, vol. 201(C).
    14. Ren, Liang & Wu, Yajuan & Gong, Yan & Guo, Qinghua & Yu, Guangsuo & Wang, Fuchen, 2024. "Experimental and kinetic studies on steam gasification of oxidized carbon-rich fraction from coal gasification fine slag," Energy, Elsevier, vol. 313(C).
    15. Huang, Qian & Xu, Jiuping, 2023. "Carbon tax revenue recycling for biomass/coal co-firing using Stackelberg game: A case study of Jiangsu province, China," Energy, Elsevier, vol. 272(C).
    16. Espinoza-Monje, J. Flavio & Garcés, Hugo O. & Díaz, Juan & Adam, Roman & Lazo, Jorge & Muñoz, Robinson & Coronado, Matías & Saiz, Gustavo & Azócar, Laura, 2024. "Investigating the properties of shrub biomass pellets through additive and sawdust admixing," Renewable Energy, Elsevier, vol. 229(C).
    17. Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    18. Xu, Li & Li, Shengcai & Sun, Wanghu & Ma, Xin & Cao, Shuchao, 2020. "Combustion behaviors and characteristic parameters determination of sassafras wood under different heating conditions," Energy, Elsevier, vol. 203(C).
    19. Mau, Vivian & Gross, Amit, 2018. "Energy conversion and gas emissions from production and combustion of poultry-litter-derived hydrochar and biochar," Applied Energy, Elsevier, vol. 213(C), pages 510-519.
    20. Huang, Qian & Feng, Qing, 2024. "Bi-level multi-objective optimization for a hybrid carbon pricing initiative towards biomass co-firing with coal," Renewable Energy, Elsevier, vol. 237(PD).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s036054422500550x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.