IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3095-d1193367.html
   My bibliography  Save this article

Evaluation and Application of Surrounding Rock Stability Based on an Improved Fuzzy Comprehensive Evaluation Method

Author

Listed:
  • Xianhui Mao

    (School of Energy and Power Engineering, Xihua University, Chengdu 610039, China)

  • Ankui Hu

    (School of Energy and Power Engineering, Xihua University, Chengdu 610039, China
    Key Laboratory of Fluid Machinery and Engineering, Xihua University, Chengdu 610039, China
    Key Laboratory of Fluid and Power Machinery, Xihua University, Ministry of Education, Chengdu 610039, China)

  • Rui Zhao

    (School of Energy and Power Engineering, Xihua University, Chengdu 610039, China
    Key Laboratory of Fluid Machinery and Engineering, Xihua University, Chengdu 610039, China
    Key Laboratory of Fluid and Power Machinery, Xihua University, Ministry of Education, Chengdu 610039, China)

  • Fei Wang

    (School of Energy and Power Engineering, Xihua University, Chengdu 610039, China
    Key Laboratory of Fluid Machinery and Engineering, Xihua University, Chengdu 610039, China
    Key Laboratory of Fluid and Power Machinery, Xihua University, Ministry of Education, Chengdu 610039, China)

  • Mengkun Wu

    (School of Energy and Power Engineering, Xihua University, Chengdu 610039, China)

Abstract

Ensuring the stability of surrounding rock is crucial for the safety of underground engineering projects. In this study, an improved fuzzy comprehensive evaluation method is proposed to accurately predict the stability of surrounding rock. Five key factors, namely, rock quality designation, uniaxial compressive strength, integrality coefficient of the rock mass, strength coefficient of the structural surface, and groundwater seepage, are selected as evaluation indicators, and a five-grade evaluation system is established. An improved analytic hierarchy process (IAHP) is proposed to enhance the accuracy of the evaluation. Using interval numbers rather than real numbers in constructing an interval judgment matrix can better account for the subjective fuzziness and uncertainty of expert judgment. Subjective and objective weights are obtained through IAHP and coefficient of variation, and the comprehensive weight is calculated on the basis of game theory principles. In addition, trapezoidal and triangular membership functions are employed to determine the membership degree, and an improved fuzzy comprehensive evaluation model is constructed. The model is then used to determine the stability of the surrounding rock based on the improved criterion. It is applied to six samples from an actual underground project in China to validate its effectiveness. Results show that the proposed model accurately and effectively predicts the stability of surrounding rock, which aligns with the findings from field investigations. The proposed method provides a valuable reference for evaluating surrounding rock stability and controlling construction risks.

Suggested Citation

  • Xianhui Mao & Ankui Hu & Rui Zhao & Fei Wang & Mengkun Wu, 2023. "Evaluation and Application of Surrounding Rock Stability Based on an Improved Fuzzy Comprehensive Evaluation Method," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3095-:d:1193367
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3095/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3095/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yingchao Wang & Ning Zhao & Hongwen Jing & Bo Meng & Xin Yin, 2016. "A Novel Model of the Ideal Point Method Coupled with Objective and Subjective Weighting Method for Evaluation of Surrounding Rock Stability," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-9, December.
    2. Hujun He & Yumei Yan & Cuixia Qu & Yue Fan, 2014. "Study and Application on Stability Classification of Tunnel Surrounding Rock Based on Uncertainty Measure Theory," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-5, October.
    3. Jielin Li & Cyril Chol Chol Deng & Jiye Xu & Zhongjian Ma & Pei Shuai & Liangbing Zhang, 2023. "Safety Risk Assessment and Management of Panzhihua Open Pit (OP)-Underground (UG) Iron Mine Based on AHP-FCE, Sichuan Province, China," Sustainability, MDPI, vol. 15(5), pages 1-23, March.
    4. Lingjie Sun & Yingyi Liu & Boyang Zhang & Yuwei Shang & Haiwen Yuan & Zhao Ma, 2016. "An Integrated Decision-Making Model for Transformer Condition Assessment Using Game Theory and Modified Evidence Combination Extended by D Numbers," Energies, MDPI, vol. 9(9), pages 1-22, August.
    5. Ding, Yanming & Zhang, Wenlong & Yu, Lei & Lu, Kaihua, 2019. "The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis," Energy, Elsevier, vol. 176(C), pages 582-588.
    6. Mingwu Wang & Xinyu Xu & Jian Li & Juliang Jin & Fengqiang Shen, 2015. "A Novel Model of Set Pair Analysis Coupled with Extenics for Evaluation of Surrounding Rock Stability," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-9, September.
    7. Gongbo Long & Yingjie Liu & Wanrong Xu & Peng Zhou & Jiaqi Zhou & Guanshui Xu & Boqi Xiao, 2022. "Analysis of Crack Problems in Multilayered Elastic Medium by a Consecutive Stiffness Method," Mathematics, MDPI, vol. 10(23), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junnan Wu & Xin Liu & Dianqi Pan & Yichen Zhang & Jiquan Zhang & Kai Ke, 2023. "Research on Safety Evaluation of Municipal Sewage Treatment Plant Based on Improved Best-Worst Method and Fuzzy Comprehensive Method," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    2. Niloofar Vahabzadeh Najafi & Alireza Arshadi Khamseh & Abolfazl Mirzazadeh, 2020. "An Integrated Sustainable and Flexible Supplier Evaluation Model under Uncertainty by Game Theory and Subjective/Objective Data: Iranian Casting Industry," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(4), pages 309-322, December.
    3. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    4. Aušra Gadeikytė & Aušra Abraitienė & Rimantas Barauskas, 2023. "Application of Combined Micro- and Macro-Scale Models to Investigate Heat and Mass Transfer through Textile Structures with Additional Ventilation," Mathematics, MDPI, vol. 11(11), pages 1-20, May.
    5. Kristina Kaulakytė & Nikolajus Kozulinas & Grigory Panasenko & Konstantinas Pileckas & Vytenis Šumskas, 2023. "Poiseuille-Type Approximations for Axisymmetric Flow in a Thin Tube with Thin Stiff Elastic Wall," Mathematics, MDPI, vol. 11(9), pages 1-18, April.
    6. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    7. Dianfa Wu & Zhiping Yang & Ningling Wang & Chengzhou Li & Yongping Yang, 2018. "An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units," Sustainability, MDPI, vol. 10(6), pages 1-27, May.
    8. Liangxing Jin & Pingting Liu & Wenbing Yao & Junjie Wei, 2024. "A Comprehensive Evaluation of Resilience in Abandoned Open-Pit Mine Slopes Based on a Two-Dimensional Cloud Model with Combination Weighting," Mathematics, MDPI, vol. 12(8), pages 1-26, April.
    9. Dai, Yeming & Yang, Xinyu & Leng, Mingming, 2022. "Forecasting power load: A hybrid forecasting method with intelligent data processing and optimized artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    10. Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
    11. Xu, Li & Li, Shengcai & Sun, Wanghu & Ma, Xin & Cao, Shuchao, 2020. "Combustion behaviors and characteristic parameters determination of sassafras wood under different heating conditions," Energy, Elsevier, vol. 203(C).
    12. Wu, C.B. & Guan, P.B. & Zhong, L.N. & Lv, J. & Hu, X.F. & Huang, G.H. & Li, C.C., 2020. "An optimized low-carbon production planning model for power industry in coal-dependent regions - A case study of Shandong, China," Energy, Elsevier, vol. 192(C).
    13. Yang, Jinhang & Wang, Xin & Shen, Boxiong & Hu, Zhenzhong & Xu, Lianfei & Yang, Shuo, 2020. "Lignin from energy plant (Arundo donax): Pyrolysis kinetics, mechanism and pathway evaluation," Renewable Energy, Elsevier, vol. 161(C), pages 963-971.
    14. Ding, Yanming & Chen, Wenlu & Zhang, Wenlong & Zhang, Xueting & Li, Changhai & Zhou, Ru & Miao, Fasheng, 2022. "Experimental and numerical simulation study of typical semi-transparent material pyrolysis with in-depth radiation based on micro and bench scales," Energy, Elsevier, vol. 258(C).
    15. Zou, Songchun & Zhao, Wanzhong, 2020. "Energy optimization strategy of vehicle DCS system based on APSO algorithm," Energy, Elsevier, vol. 208(C).
    16. Qingfu Li & Huade Zhou & Qiang Ma & Linfang Lu, 2021. "Evaluation of Serviceability of Canal Lining Based on AHP–Simple Correlation Function Method–Cloud Model: A Case Study in Henan Province, China," Sustainability, MDPI, vol. 13(21), pages 1-25, November.
    17. Amir A. Gubaidullin & Anna V. Pyatkova, 2023. "The Effects of Heat Transfer through the Ends of a Cylindrical Cavity on Acoustic Streaming and Gas Temperature," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    18. Liu, Cong & Li, Kaiwei & Zhang, Jiquan & Guga, Suri & Wang, Rui & Liu, Xingpeng & Tong, Zhijun, 2023. "Dynamic risk assessment of waterlogging disaster to spring peanut (Arachis hypogaea L.) in Henan Province, China," Agricultural Water Management, Elsevier, vol. 277(C).
    19. Tong Wang & Yang Liu & Qiyuan Li & Peng Du & Xiaogong Zheng & Qingfei Gao, 2023. "State-of-the-Art Review of the Resilience of Urban Bridge Networks," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    20. Zhang, Yuanjian & Huang, Yanjun & Chen, Haibo & Na, Xiaoxiang & Chen, Zheng & Liu, Yonggang, 2021. "Driving behavior oriented torque demand regulation for electric vehicles with single pedal driving," Energy, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3095-:d:1193367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.