IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i8p3677-d1637651.html
   My bibliography  Save this article

Study on the Response of Chemical Kinetics of Fragmented Coal Under Dynamic Load

Author

Listed:
  • Liang Wang

    (State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
    School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China)

  • Wushuang Wen

    (State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
    School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China)

  • Wenjie Xu

    (State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
    School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China)

  • Kai Zhu

    (State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
    School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China)

  • Xiaoqing Guan

    (State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
    School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China)

Abstract

As coal resources deplete and deep mining in high-stress environments becomes more challenging, ensuring safety and sustainability in coal production is a growing concern. This study investigates the dynamic of external load on the oxidation kinetics of coal in goaf, focusing on the resulting physical and chemical changes. Thermogravimetric (TG), differential thermogravimetric (DTG), and differential scanning calorimetry (DSC) tests were conducted on long-flame coal samples under varying hammer-drop heights. Impact-loaded coal shows a shorter reaction time, higher peak intensity, and lower apparent activation energy than untreated coal. These effects intensify with increasing drop height, resulting in a 13–40% reduction in apparent activation energy. A six-step reaction pathway for pyrolysis and oxidation was developed, and kinetics parameters were determined using genetic algorithms (GA). GA-based inverse modeling produced a comprehensive reaction model for coal oxidation under dynamic load. This work presents a detailed kinetic model for coal oxidation under impact, contributing to better understanding the challenges of safety and sustainability in deep coal mining.

Suggested Citation

  • Liang Wang & Wushuang Wen & Wenjie Xu & Kai Zhu & Xiaoqing Guan, 2025. "Study on the Response of Chemical Kinetics of Fragmented Coal Under Dynamic Load," Sustainability, MDPI, vol. 17(8), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3677-:d:1637651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/8/3677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/8/3677/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaojun Feng & Zichuang Ai & Xuebo Zhang & Qilei Wei & Chenjun Du & Qiming Zhang & Chuan Deng, 2023. "Numerical Investigation of the Evolution of Gas and Coal Spontaneously Burned Composite Disaster in the Goaf of Steeply Inclined Coal Seam," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    2. Liu, Shumin & Sun, Haitao & Zhang, Dongming & Yang, Kun & Li, Xuelong & Wang, Dengke & Li, Yaning, 2023. "Experimental study of effect of liquid nitrogen cold soaking on coal pore structure and fractal characteristics," Energy, Elsevier, vol. 275(C).
    3. Ding, Yanming & Zhang, Wenlong & Yu, Lei & Lu, Kaihua, 2019. "The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis," Energy, Elsevier, vol. 176(C), pages 582-588.
    4. Xuanping Gong & Sheng Xue & Baiqing Han & Chunshan Zheng & Licheng Zhu & Yangyang Dong & Yaobin Li, 2022. "Research Progress on Stress–Fracture–Seepage Characteristics for Hazard Prevention in Mine Goafs: A Review," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    5. Yuriy Leonidovich Zhukovskiy & Daria Evgenievna Batueva & Alexandra Dmitrievna Buldysko & Bernard Gil & Valeriia Vladimirovna Starshaia, 2021. "Fossil Energy in the Framework of Sustainable Development: Analysis of Prospects and Development of Forecast Scenarios," Energies, MDPI, vol. 14(17), pages 1-28, August.
    6. Zhai, Xiaowei & Ge, Hui & Wang, Tingyan & Shu, Chi-Min & Li, Jun, 2020. "Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal," Energy, Elsevier, vol. 205(C).
    7. Bin Du & Yuntao Liang & Fuchao Tian & Baolong Guo, 2023. "Analytical Prediction of Coal Spontaneous Combustion Tendency: Pore Structure and Air Permeability," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei & Wang, Deming & Xin, Haihui & Wang, Chenguang & Xu, Zuoming & Hou, Zhenhai & Qi, Zhangfan, 2024. "Reignition characteristics of lignite affected by pre-oxidation and liquid nitrogen cold soaking," Energy, Elsevier, vol. 303(C).
    2. Yue, Jiwei & Wang, Chen & Shi, Biming & Sun, Yongxin & Han, Qijun & Liang, Yuehui & Xu, Jinlin, 2024. "Gas desorption characteristics in different stages for retained water infiltration gas-bearing coal and its influence mechanism," Energy, Elsevier, vol. 293(C).
    3. Yuxuan Zhou & Shugang Li & Yang Bai & Hang Long & Yuchu Cai & Jingfei Zhang, 2023. "Joint Characterization and Fractal Laws of Pore Structure in Low-Rank Coal," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    4. Yuriy Zhukovskiy & Pavel Tsvetkov & Aleksandra Buldysko & Yana Malkova & Antonina Stoianova & Anastasia Koshenkova, 2021. "Scenario Modeling of Sustainable Development of Energy Supply in the Arctic," Resources, MDPI, vol. 10(12), pages 1-25, December.
    5. Andri Ottesen & Dieter Thom & Rupali Bhagat & Rola Mourdaa, 2023. "Learning from the Future of Kuwait: Scenarios as a Learning Tool to Build Consensus for Actions Needed to Realize Vision 2035," Sustainability, MDPI, vol. 15(9), pages 1-25, April.
    6. Dai, Yeming & Yang, Xinyu & Leng, Mingming, 2022. "Forecasting power load: A hybrid forecasting method with intelligent data processing and optimized artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    7. Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
    8. Xu, Li & Li, Shengcai & Sun, Wanghu & Ma, Xin & Cao, Shuchao, 2020. "Combustion behaviors and characteristic parameters determination of sassafras wood under different heating conditions," Energy, Elsevier, vol. 203(C).
    9. Wu, C.B. & Guan, P.B. & Zhong, L.N. & Lv, J. & Hu, X.F. & Huang, G.H. & Li, C.C., 2020. "An optimized low-carbon production planning model for power industry in coal-dependent regions - A case study of Shandong, China," Energy, Elsevier, vol. 192(C).
    10. Yang, Jinhang & Wang, Xin & Shen, Boxiong & Hu, Zhenzhong & Xu, Lianfei & Yang, Shuo, 2020. "Lignin from energy plant (Arundo donax): Pyrolysis kinetics, mechanism and pathway evaluation," Renewable Energy, Elsevier, vol. 161(C), pages 963-971.
    11. Deng, Jun & Yang, Nannan & Wang, Caiping & Yin, Deng & Xiaoyong, Zhao & He, Yongjun, 2023. "Study on staged heat transfer law of coal spontaneous combustion in deep mines," Energy, Elsevier, vol. 285(C).
    12. Xianhui Mao & Ankui Hu & Rui Zhao & Fei Wang & Mengkun Wu, 2023. "Evaluation and Application of Surrounding Rock Stability Based on an Improved Fuzzy Comprehensive Evaluation Method," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    13. Diana Lvova & Artem Shagiakhmetov & Boris Seregin & Aleksey Vasiliev, 2022. "Facilities Construction Engineering for the Avaldsnes Section of the Johan Sverdrup Field in the North Sea," Energies, MDPI, vol. 15(12), pages 1-18, June.
    14. Chenglin Tian & He Wang & Xu Wang & Tao Wang & Yong Sun & Qingbiao Wang & Xuelong Li & Zhenyue Shi & Keyong Wang, 2025. "Optimization of Blasting Scheme of Gas-Containing Tunnel and Study on the Law of Gas Diffusion and Transportation," Sustainability, MDPI, vol. 17(5), pages 1-24, February.
    15. Xu, Xiaoxue & Yuan, Shujie & Li, Jinhu & Guo, Shengli & Yan, Zhuo, 2023. "Preparation of lignin-based intumescent nanogel and its mechanism of inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 275(C).
    16. Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
    17. Amina Andreichyk & Pavel Tsvetkov, 2023. "Study of the Relationship between Economic Growth and Greenhouse Gas Emissions of the Shanghai Cooperation Organization Countries on the Basis of the Environmental Kuznets Curve," Resources, MDPI, vol. 12(7), pages 1-20, July.
    18. Alessandra Cornaro & Giorgio Rizzini, 2024. "Environmentally extended input–output analysis in complex networks: a multilayer approach," Annals of Operations Research, Springer, vol. 342(3), pages 2021-2048, November.
    19. Ding, Yanming & Chen, Wenlu & Zhang, Wenlong & Zhang, Xueting & Li, Changhai & Zhou, Ru & Miao, Fasheng, 2022. "Experimental and numerical simulation study of typical semi-transparent material pyrolysis with in-depth radiation based on micro and bench scales," Energy, Elsevier, vol. 258(C).
    20. Zou, Songchun & Zhao, Wanzhong, 2020. "Energy optimization strategy of vehicle DCS system based on APSO algorithm," Energy, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3677-:d:1637651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.