IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p12314-d674316.html
   My bibliography  Save this article

Evaluation of Serviceability of Canal Lining Based on AHP–Simple Correlation Function Method–Cloud Model: A Case Study in Henan Province, China

Author

Listed:
  • Qingfu Li

    (School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Huade Zhou

    (School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Qiang Ma

    (Construction Management Bureau of the Second Phase Project of Zhaokou Irrigation District of the Yellow River, Kaifeng 475000, China)

  • Linfang Lu

    (Construction Management Bureau of the Second Phase Project of Zhaokou Irrigation District of the Yellow River, Kaifeng 475000, China)

Abstract

In the process of sustainable development within modern agriculture, in order to ensure that agricultural production has adequate water resources, canal lining (CL) is often used to transport water in order to reduce water seepage, thus promoting the sustainable utilization of water resources. However, due to the influence of the terrain, environment, human factors and other factors, the CL often suffers a certain degree of damage. Therefore, it is necessary to evaluate the serviceability of the CL, so to realize the sustainable use of the CL strategy. Aiming at the weight assignment of CL evaluation indices that are subjective and not combined with actual index data, a weight calculation method based on the Analytic Hierarchy Process (AHP)–simple correlation function (SCF) method was proposed, and game theory was used to achieve combination weighting. For the evaluation indices with the characteristics of fuzziness and randomness, the cloud model (CM) was used to comprehensively consider these characteristics in order to realize the evaluation. Finally, a method to measure serviceability of CL based on AHP–SCF–CM was proposed. Taking a CL project in China as an example, this method was used to evaluate the serviceability of the CL. The evaluation result showed that the serviceability of the CL was poor, and the qualitative evaluation result was consistent with the actual damage condition of the project; meanwhile, a comparative study was performed in combination with the AHP–Entropy Weight (EW)–unascertained measurement theory (UMT). The quantitative evaluation results of the two methods displayed the same grade of serviceability, which verifies that the method proposed in this paper is more reasonable, objective and feasible from both qualitative and quantitative perspectives. Furthermore, the evaluation results lay the foundation for subsequent maintenance and fault prevention of the canal.

Suggested Citation

  • Qingfu Li & Huade Zhou & Qiang Ma & Linfang Lu, 2021. "Evaluation of Serviceability of Canal Lining Based on AHP–Simple Correlation Function Method–Cloud Model: A Case Study in Henan Province, China," Sustainability, MDPI, vol. 13(21), pages 1-25, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12314-:d:674316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/12314/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/12314/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xie, Shuyi & Dong, Shaohua & Chen, Yinuo & Peng, Yujie & Li, Xincai, 2021. "A novel risk evaluation method for fire and explosion accidents in oil depots using bow-tie analysis and risk matrix analysis method based on cloud model theory," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Asad Sarwar Qureshi & Chris Perry, 2021. "Managing Water and Salt for Sustainable Agriculture in the Indus Basin of Pakistan," Sustainability, MDPI, vol. 13(9), pages 1-14, May.
    3. Xinchang Zhang & Min Chen & Kai Guo & Yang Liu & Yi Liu & Weinan Cai & Hua Wu & Zeyi Chen & Yiyun Chen & Jianguo Zhang, 2021. "Regional Land Eco-Security Evaluation for the Mining City of Daye in China Using the GIS-Based Grey TOPSIS Method," Land, MDPI, vol. 10(2), pages 1-18, January.
    4. Jian-qiang Wang & Juan-juan Peng & Hong-yu Zhang & Tao Liu & Xiao-hong Chen, 2015. "An Uncertain Linguistic Multi-criteria Group Decision-Making Method Based on a Cloud Model," Group Decision and Negotiation, Springer, vol. 24(1), pages 171-192, January.
    5. Kahlown, Muhammad Akram & Kemper, W.D., 2005. "Reducing water losses from channels using linings: Costs and benefits in Pakistan," Agricultural Water Management, Elsevier, vol. 74(1), pages 57-76, May.
    6. Lund, A.A. Rehman & Martin, Chad A. & Gates, Timothy K. & Scalia, Joseph & Babar, M. Munir, 2021. "Field evaluation of a polymer sealant for canal seepage reduction," Agricultural Water Management, Elsevier, vol. 252(C).
    7. Haorui Chen & Zhanyi Gao & Wenzhi Zeng & Jing Liu & Xiao Tan & Songjun Han & Shaoli Wang & Yongqing Zhao & Chengkun Yu, 2017. "Scale Effects of Water Saving on Irrigation Efficiency: Case Study of a Rice-Based Groundwater Irrigation System on the Sanjiang Plain, Northeast China," Sustainability, MDPI, vol. 10(1), pages 1-18, December.
    8. Thomas L. Saaty, 1994. "How to Make a Decision: The Analytic Hierarchy Process," Interfaces, INFORMS, vol. 24(6), pages 19-43, December.
    9. Lingjie Sun & Yingyi Liu & Boyang Zhang & Yuwei Shang & Haiwen Yuan & Zhao Ma, 2016. "An Integrated Decision-Making Model for Transformer Condition Assessment Using Game Theory and Modified Evidence Combination Extended by D Numbers," Energies, MDPI, vol. 9(9), pages 1-22, August.
    10. Qiuyan Liu & Mingwu Wang & Xiao Wang & Fengqiang Shen & Juliang Jin, 2018. "Land Eco-Security Assessment Based on the Multi-Dimensional Connection Cloud Model," Sustainability, MDPI, vol. 10(6), pages 1-13, June.
    11. Yang, Zitong & Huang, Xianfeng & Fang, Guohua & Ye, Jian & Lu, ChengXuan, 2021. "Benefit evaluation of East Route Project of South to North Water Transfer based on trapezoid cloud model," Agricultural Water Management, Elsevier, vol. 254(C).
    12. Kunpeng Wang & Chenggang Lu & Qingfu Li, 2021. "Study on Identifying Significant Risk Sources during Bridge Construction Based on Grey Entropy Correlation Analysis Method," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingfu Li & Binghui Wu & Huade Zhou, 2022. "Damage Simulation Analysis of Canal Concrete Lining Plates Based on Temperature-Stress-Water Load Coupling," Sustainability, MDPI, vol. 14(15), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dianfa Wu & Zhiping Yang & Ningling Wang & Chengzhou Li & Yongping Yang, 2018. "An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units," Sustainability, MDPI, vol. 10(6), pages 1-27, May.
    2. Yanwei Zhang & Hualin Xie, 2019. "Welfare Effect Evaluation of Land-Lost Farmers’ Households under Different Livelihood Asset Allocation," Land, MDPI, vol. 8(11), pages 1-41, November.
    3. Qingfu Li & Lixin Guo & Huade Zhou, 2022. "Construction Quality Evaluation of Large-Scale Concrete Canal Lining Based on Statistical Analysis, FAHM, and Cloud Model," Sustainability, MDPI, vol. 14(13), pages 1-30, June.
    4. Niloofar Vahabzadeh Najafi & Alireza Arshadi Khamseh & Abolfazl Mirzazadeh, 2020. "An Integrated Sustainable and Flexible Supplier Evaluation Model under Uncertainty by Game Theory and Subjective/Objective Data: Iranian Casting Industry," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(4), pages 309-322, December.
    5. Yan, Hong-Bin & Ma, Tieju & Huynh, Van-Nam, 2017. "On qualitative multi-attribute group decision making and its consensus measure: A probability based perspective," Omega, Elsevier, vol. 70(C), pages 94-117.
    6. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    7. Bhatta, Arun & Bigsby, Hugh R. & Cullen, Ross, 2011. "Alternative to Comprehensive Ecosystem Services Markets: The Contribution of Forest-Related Programs in New Zealand," 2011 Conference, August 25-26, 2011, Nelson, New Zealand 115350, New Zealand Agricultural and Resource Economics Society.
    8. Daniel Schatz & Rabih Bashroush, 0. "Economic valuation for information security investment: a systematic literature review," Information Systems Frontiers, Springer, vol. 0, pages 1-24.
    9. Mei Cai & Yuanyuan Hong, 2022. "Improved TOPSIS Method Considering Fuzziness and Randomness in Multi-Attribute Group Decision Making," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    10. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    11. Chandratilake, S.R. & Dias, W.P.S., 2013. "Sustainability rating systems for buildings: Comparisons and correlations," Energy, Elsevier, vol. 59(C), pages 22-28.
    12. Certa, Antonella & Hopps, Fabrizio & Inghilleri, Roberta & La Fata, Concetta Manuela, 2017. "A Dempster-Shafer Theory-based approach to the Failure Mode, Effects and Criticality Analysis (FMECA) under epistemic uncertainty: application to the propulsion system of a fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 69-79.
    13. Bertomeu, M. & Romero, C., 2001. "Managing forest biodiversity: a zero-one goal programming approach," Agricultural Systems, Elsevier, vol. 68(3), pages 197-213, June.
    14. Hyunjin Lim & Sunkuk Kim & Yonggu Kim & Seunghyun Son, 2021. "Relative Importance Analysis of Safety Climate Evaluation Factors Using Analytical Hierarchical Process (AHP)," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    15. Peide Liu & Hongyu Yang & Haiquan Wu & Meilong Ju & Fawaz E. Alsaadi, 2019. "Some Maclaurin Symmetric Mean Aggregation Operators Based on Cloud Model and Their Application to Decision-Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 981-1007, May.
    16. Ormerod, R.J., 2014. "Critical rationalism in practice: Strategies to manage subjectivity in OR investigations," European Journal of Operational Research, Elsevier, vol. 235(3), pages 784-797.
    17. Carayannis, Elias G. & Goletsis, Yorgos & Grigoroudis, Evangelos, 2018. "Composite innovation metrics: MCDA and the Quadruple Innovation Helix framework," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 4-17.
    18. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    19. Sunita Guru & Jitendra Nenavani & Vipul Patel & Nityesh Bhatt, 2020. "Ranking of perceived risks in online shopping," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(2), pages 137-152, June.
    20. Rimvydas Labanauskis & Aurelija Kasparavičiūtė & Vida Davidavičienė & Dovilė Deltuvienė, 2018. "Towards quality assurance of the study process using the Multi-Criteria Decision-Making Method," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 6(2), pages 799-819, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12314-:d:674316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.