IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v176y2019icp224-234.html
   My bibliography  Save this article

Economic analysis of wet waste-to-energy resources in the United States

Author

Listed:
  • Badgett, Alex
  • Newes, Emily
  • Milbrandt, Anelia

Abstract

Waste-to-energy (WTE) technologies provide opportunities to use waste materials beneficially in producing power, transportation fuels, and chemicals. Using a suite of economic models, this study estimates prices of four WTE resources: food waste; fats, oils, and greases (FOG); animal manure; and sewage sludge. Some of these materials are commoditized (e.g. FOG) thus their price is determined by market demand. For the materials regarded as waste, the study relates price to the avoided cost of disposal through waste management alternatives such as landfilling. This study finds that significant amounts of these feedstocks could be available at negative prices, meaning that a potential bioenergy facility could receive these materials for free or be paid to accept them in some locations. It is estimated that about 61% of sewage sludge, 27% of manure, and 7% of food waste may be available at negative prices. These negative price feedstocks are not uniformly distributed and are most likely to occur in areas with organic waste disposal bans, high population densities, and high landfill tipping fees. This study intends to open an initial discussion into how stakeholders view and value these materials, and how this view is evolving as their potential as WTE feedstocks is realized.

Suggested Citation

  • Badgett, Alex & Newes, Emily & Milbrandt, Anelia, 2019. "Economic analysis of wet waste-to-energy resources in the United States," Energy, Elsevier, vol. 176(C), pages 224-234.
  • Handle: RePEc:eee:energy:v:176:y:2019:i:c:p:224-234
    DOI: 10.1016/j.energy.2019.03.188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219306085
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.03.188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aillery, Marcel P. & Gollehon, Noel R. & Breneman, Vincent E., 2005. "Technical Documentation of the Regional Manure Management Model for the Chesapeake Bay Watershed," Technical Bulletins 33570, United States Department of Agriculture, Economic Research Service.
    2. Skaggs, Richard L. & Coleman, André M. & Seiple, Timothy E. & Milbrandt, Anelia R., 2018. "Waste-to-Energy biofuel production potential for selected feedstocks in the conterminous United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2640-2651.
    3. Browne, James D. & Murphy, Jerry D., 2013. "Assessment of the resource associated with biomethane from food waste," Applied Energy, Elsevier, vol. 104(C), pages 170-177.
    4. Ribaudo, Marc & Kaplan, Jonathan D. & Christensen, Lee A. & Gollehon, Noel R. & Johansson, Robert C. & Breneman, Vincent E. & Aillery, Marcel P. & Agapoff, Jean & Peters, Mark, 2003. "Manure Management For Water Quality Costs To Animal Feeding Operations Of Applying Manure Nutrients To Land," Agricultural Economic Reports 33911, United States Department of Agriculture, Economic Research Service.
    5. Aillery, Marcel P. & Gollehon, Noel & Breneman, Vincent E., 2005. "Technical Documentation of the Regional Manure Management Model for the Chesapeake Bay Watershed," Technical Bulletins 184315, United States Department of Agriculture, Economic Research Service.
    6. MacDonald, James M. & Ribaudo, Marc O. & Livingston, Michael J. & Beckman, Jayson & Huang, Wen, 2009. "Manure Use for Fertilizer and for Energy: Report to Congress," Administrative Publications 292135, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salameh, Tareq & Tawalbeh, Muhammad & Al-Shannag, Mohammad & Saidan, Motasem & Melhem, Khalid Bani & Alkasrawi, Malek, 2020. "Energy saving in the process of bioethanol production from renewable paper mill sludge," Energy, Elsevier, vol. 196(C).
    2. Cuéllar-Franca, Rosa & García-Gutiérrez, Pelayo & Dimitriou, Ioanna & Elder, Rachael H. & Allen, Ray W.K. & Azapagic, Adisa, 2019. "Utilising carbon dioxide for transport fuels: The economic and environmental sustainability of different Fischer-Tropsch process designs," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Nikolaos Detsios & Stella Theodoraki & Leda Maragoudaki & Konstantinos Atsonios & Panagiotis Grammelis & Nikolaos G. Orfanoudakis, 2023. "Recent Advances on Alternative Aviation Fuels/Pathways: A Critical Review," Energies, MDPI, vol. 16(4), pages 1-25, February.
    4. Younes, Amin & Fingerman, Kevin R. & Barrientos, Cassidy & Carman, Jerome & Johnson, Karly & Wallach, Eli S., 2022. "How the U.S. Renewable Fuel Standard could use garbage to pay for electric vehicles," Energy Policy, Elsevier, vol. 166(C).
    5. Mohammad Ghorbani & Petr Konvalina & Anna Walkiewicz & Reinhard W. Neugschwandtner & Marek Kopecký & Kazem Zamanian & Wei-Hsin Chen & Daniel Bucur, 2022. "Feasibility of Biochar Derived from Sewage Sludge to Promote Sustainable Agriculture and Mitigate GHG Emissions—A Review," IJERPH, MDPI, vol. 19(19), pages 1-23, October.
    6. Hrabec, Dušan & Šomplák, Radovan & Nevrlý, Vlastimír & Viktorin, Adam & Pluháček, Michal & Popela, Pavel, 2020. "Sustainable waste-to-energy facility location: Influence of demand on energy sales," Energy, Elsevier, vol. 207(C).
    7. Martinez-Valencia, Lina & Garcia-Perez, Manuel & Wolcott, Michael P., 2021. "Supply chain configuration of sustainable aviation fuel: Review, challenges, and pathways for including environmental and social benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ribaudo, Marc & Savage, Jeffrey & Aillery, Marcel P., 2014. "An Economic Assessment of Policy Options To Reduce Agricultural Pollutants in the Chesapeake Bay," Economic Research Report 171880, United States Department of Agriculture, Economic Research Service.
    2. Angelis-Dimakis, Athanasios & Biberacher, Markus & Dominguez, Javier & Fiorese, Giulia & Gadocha, Sabine & Gnansounou, Edgard & Guariso, Giorgio & Kartalidis, Avraam & Panichelli, Luis & Pinedo, Irene, 2011. "Methods and tools to evaluate the availability of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1182-1200, February.
    3. Xue, Xiaobo & Pang, YuLei & Landis, Amy E., 2014. "Evaluating agricultural management practices to improve the environmental footprint of corn-derived ethanol," Renewable Energy, Elsevier, vol. 66(C), pages 454-460.
    4. Key, Nigel D. & Kaplan, Jonathan D., 2007. "Multiple Environmental Externalities and Manure Management Policy," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 32(1), pages 1-20, April.
    5. Colyer, Dale, 2004. "Environmental Regulations And Competitiveness," Working Papers 19100, West Virginia University, Department of Agricultural Resource Economics.
    6. Triolo, Jin M. & Ward, Alastair J. & Pedersen, Lene & Løkke, Mette M. & Qu, Haiyan & Sommer, Sven G., 2014. "Near Infrared Reflectance Spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass," Applied Energy, Elsevier, vol. 116(C), pages 52-57.
    7. O’Shea, Richard & Kilgallon, Ian & Wall, David & Murphy, Jerry D., 2016. "Quantification and location of a renewable gas industry based on digestion of wastes in Ireland," Applied Energy, Elsevier, vol. 175(C), pages 229-239.
    8. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    9. Haluk Gedikoglu & Sansel Tandogan & Joseph Parcell, 2023. "Neighbor effects on adoption of conservation practices: cases of grass filter systems and injecting manure," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 70(3), pages 723-756, June.
    10. Key, Nigel D. & McBride, William D. & Mosheim, Roberto, 2008. "Decomposition of Total Factor Productivity Change in the U.S. Hog Industry," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 40(1), pages 1-13, April.
    11. MacDonald, James M. & O'Donoghue, Erik J. & McBride, William D. & Nehring, Richard F. & Sandretto, Carmen L. & Mosheim, Roberto, 2007. "Profits, Costs, and the Changing Structure of Dairy Farming," Economic Research Report 6704, United States Department of Agriculture, Economic Research Service.
    12. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    13. Johansson, Robert & Peters, Mark & House, Robert, 2007. "Regional Environment and Agriculture Programming Model," Technical Bulletins 184314, United States Department of Agriculture, Economic Research Service.
    14. Roubík, Hynek & Mazancová, Jana & Phung, Le Dinh & Banout, Jan, 2018. "Current approach to manure management for small-scale Southeast Asian farmers - Using Vietnamese biogas and non-biogas farms as an example," Renewable Energy, Elsevier, vol. 115(C), pages 362-370.
    15. Dandikas, Vasilis & Heuwinkel, Hauke & Lichti, Fabian & Eckl, Thomas & Drewes, Jörg E. & Koch, Konrad, 2018. "Correlation between hydrolysis rate constant and chemical composition of energy crops," Renewable Energy, Elsevier, vol. 118(C), pages 34-42.
    16. Baerenklau, Kenneth A. & Nergis, Nermin & Schwabe, Kurt A., 2007. "Effects of Nutrient Restrictions on Confined Animal Facilities: Insights from a Structural Model," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon 10253, Western Agricultural Economics Association.
    17. Michael Boehlje & Allan Gray & Tyler Mark, 2006. "the Growth Potential for the Indiana Livestock Industries," Working Papers 06-06, Purdue University, College of Agriculture, Department of Agricultural Economics.
    18. Eleni Iacovidou & Jonathan Busch & John N. Hahladakis & Helen Baxter & Kok Siew Ng & Ben M. J. Herbert, 2017. "A Parameter Selection Framework for Sustainability Assessment," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    19. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Murphy, Jerry D., 2016. "A detailed assessment of resource of biomethane from first, second and third generation substrates," Renewable Energy, Elsevier, vol. 87(P1), pages 656-665.
    20. Sneeringer, Stacy, 2016. "Comparing Participation in Nutrient Trading by Livestock Operations to Crop Producers in the Chesapeake Bay Watershed," Economic Research Report 249772, United States Department of Agriculture, Economic Research Service.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:176:y:2019:i:c:p:224-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.