IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp937-948.html
   My bibliography  Save this article

Dynamic battery equalization with energy and time efficiency for electric vehicles

Author

Listed:
  • Wu, Zhou
  • Ling, Rui
  • Tang, Ruoli

Abstract

Battery equalization is a critical technology in energy storage systems, so that each storage cell has equal state. In the application of electric vehicle, equalization circuits and algorithms have been widely studied for the purpose of prolonging driving time, but optimization of equalization efficiency is a difficult task in the battery equalization of electric vehicle. In this paper, an optimization model with a linear form is proposed to incorporate both energy loss and equalization time for an energy-bus equalizer. In the consideration of different working status of electric vehicle, i.e., charging, discharging, and driving, dynamic equalization has been investigated, and a model predictive control approach is proposed to cope with frequent change of working status. According to simulation and experimental results, it can be concluded that energy and time efficiency can be significantly improved during dynamic battery equalization, and that the proposed equalization system is easily implemented with competitive simplicity due to the linearized system model.

Suggested Citation

  • Wu, Zhou & Ling, Rui & Tang, Ruoli, 2017. "Dynamic battery equalization with energy and time efficiency for electric vehicles," Energy, Elsevier, vol. 141(C), pages 937-948.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:937-948
    DOI: 10.1016/j.energy.2017.09.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421731650X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.09.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pinto, Cláudio & Barreras, Jorge V. & de Castro, Ricardo & Araújo, Rui Esteves & Schaltz, Erik, 2017. "Study on the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles," Energy, Elsevier, vol. 137(C), pages 272-284.
    2. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    3. Kang, LiuWang & Zhao, Xuan & Ma, Jian, 2014. "A new neural network model for the state-of-charge estimation in the battery degradation process," Applied Energy, Elsevier, vol. 121(C), pages 20-27.
    4. Li, Junfu & Wang, Lixin & Lyu, Chao & Zhang, Liqiang & Wang, Han, 2015. "Discharge capacity estimation for Li-ion batteries based on particle filter under multi-operating conditions," Energy, Elsevier, vol. 86(C), pages 638-648.
    5. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    6. Cai, Y. & Yang, F. & Ouyang, MG., 2016. "Impact of control strategy on battery degradation for a plug-in hybrid electric city bus in China," Energy, Elsevier, vol. 116(P1), pages 1020-1030.
    7. Wu, Zhou & Tazvinga, Henerica & Xia, Xiaohua, 2015. "Demand side management of photovoltaic-battery hybrid system," Applied Energy, Elsevier, vol. 148(C), pages 294-304.
    8. Zhang, Shumei & Qiang, Jiaxi & Yang, Lin & Zhao, Xiaowei, 2016. "Prior-knowledge-independent equalization to improve battery uniformity with energy efficiency and time efficiency for lithium-ion battery," Energy, Elsevier, vol. 94(C), pages 1-12.
    9. Vassileva, Iana & Campillo, Javier, 2017. "Adoption barriers for electric vehicles: Experiences from early adopters in Sweden," Energy, Elsevier, vol. 120(C), pages 632-641.
    10. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2017. "Profitability, risk, and financial modeling of energy storage in residential and large scale applications," Energy, Elsevier, vol. 119(C), pages 94-109.
    11. Sousa, Tiago & Vale, Zita & Carvalho, Joao Paulo & Pinto, Tiago & Morais, Hugo, 2014. "A hybrid simulated annealing approach to handle energy resource management considering an intensive use of electric vehicles," Energy, Elsevier, vol. 67(C), pages 81-96.
    12. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai & Xie, Jing & Zhang, Xu, 2015. "A novel active equalization method for lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 145(C), pages 36-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Zepeng & Chen, Sizhong & Zhao, Yuzhuang & Liu, Zheng, 2019. "Numerical evaluation of compatibility between comfort and energy recovery based on energy flow mechanism inside electromagnetic active suspension," Energy, Elsevier, vol. 170(C), pages 521-536.
    2. Xiaogang Wu & Zhihao Cui & Xuefeng Li & Jiuyu Du & Ye Liu, 2019. "Control Strategy for Active Hierarchical Equalization Circuits of Series Battery Packs," Energies, MDPI, vol. 12(11), pages 1-18, May.
    3. Shixin Song & Feng Xiao & Silun Peng & Chuanxue Song & Yulong Shao, 2018. "A High-Efficiency Bidirectional Active Balance for Electric Vehicle Battery Packs Based on Model Predictive Control," Energies, MDPI, vol. 11(11), pages 1-24, November.
    4. Li, Penghua & Liu, Jianfei & Deng, Zhongwei & Yang, Yalian & Lin, Xianke & Couture, Jonathan & Hu, Xiaosong, 2022. "Increasing energy utilization of battery energy storage via active multivariable fusion-driven balancing," Energy, Elsevier, vol. 243(C).
    5. Zheng, Linfeng & Zhu, Jianguo & Lu, Dylan Dah-Chuan & Wang, Guoxiu & He, Tingting, 2018. "Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries," Energy, Elsevier, vol. 150(C), pages 759-769.
    6. Lv, Jie & Lin, Shili & Song, Wenji & Chen, Mingbiao & Feng, Ziping & Li, Yongliang & Ding, Yulong, 2019. "Performance of LiFePO4 batteries in parallel based on connection topology," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Yang Yang & Wenchao Zhu & Changjun Xie & Ying Shi & Furong Liu & Weibo Li & Zebo Tang, 2020. "A Layered Bidirectional Active Equalization Method for Retired Power Lithium-Ion Batteries for Energy Storage Applications," Energies, MDPI, vol. 13(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shumei & Qiang, Jiaxi & Yang, Lin & Zhao, Xiaowei, 2016. "Prior-knowledge-independent equalization to improve battery uniformity with energy efficiency and time efficiency for lithium-ion battery," Energy, Elsevier, vol. 94(C), pages 1-12.
    2. Soares, Ana & Antunes, Carlos Henggeler & Oliveira, Carlos & Gomes, Álvaro, 2014. "A multi-objective genetic approach to domestic load scheduling in an energy management system," Energy, Elsevier, vol. 77(C), pages 144-152.
    3. Turksoy, Arzu & Teke, Ahmet & Alkaya, Alkan, 2020. "A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Turksoy, Arzu & Teke, Ahmet, 2023. "A fast and energy-efficient nonnegative least square-based optimal active battery balancing control strategy for electric vehicle applications," Energy, Elsevier, vol. 262(PA).
    5. Durmaz, Tunç, 2016. "Precautionary Storage in Electricity Markets," Discussion Papers 2016/5, Norwegian School of Economics, Department of Business and Management Science.
    6. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    8. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    10. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    11. Baresch, Martin & Moser, Simon, 2019. "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 388-395.
    12. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    13. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    14. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    15. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    16. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    17. David Drysdale & Brian Vad Mathiesen & Henrik Lund, 2019. "From Carbon Calculators to Energy System Analysis in Cities," Energies, MDPI, vol. 12(12), pages 1-21, June.
    18. Li, Yue & Chattopadhyay, Pritthi & Xiong, Sihan & Ray, Asok & Rahn, Christopher D., 2016. "Dynamic data-driven and model-based recursive analysis for estimation of battery state-of-charge," Applied Energy, Elsevier, vol. 184(C), pages 266-275.
    19. Ramos-Real, Francisco J. & Ramírez-Díaz, Alfredo & Marrero, Gustavo A. & Perez, Yannick, 2018. "Willingness to pay for electric vehicles in island regions: The case of Tenerife (Canary Islands)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 140-149.
    20. Kovacic, Zora & Giampietro, Mario, 2015. "Empty promises or promising futures? The case of smart grids," Energy, Elsevier, vol. 93(P1), pages 67-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:937-948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.