IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp260-271.html
   My bibliography  Save this article

Modeling the impact of road network configuration on vehicle energy consumption

Author

Listed:
  • Luin, B.
  • Petelin, S.
  • Al Mansour, F.

Abstract

The paper shows that road geometry has a great impact on overall fuel consumption and emissions. Some roads connect traffic origins and destinations directly, while some take winding, indirect routes. Indirect connections result in longer distances driven and increased fuel consumption. A similar effect is observed on congested roads with stop and go traffic and on mountain roads with many changes in elevation. In this light, we propose a methodology for analysis of road networks based on energy consumed by the vehicles and the energy needed to build more efficient connections. This framework takes into consideration traffic volume, shares of vehicle classes, road geometry and energy needed for road operation and construction. Its application was illustrated through two case studies, one with macroscopic traffic data and one with microscopic traffic simulation that can also be applied for urban road network optimization.

Suggested Citation

  • Luin, B. & Petelin, S. & Al Mansour, F., 2017. "Modeling the impact of road network configuration on vehicle energy consumption," Energy, Elsevier, vol. 137(C), pages 260-271.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:260-271
    DOI: 10.1016/j.energy.2017.06.138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217311386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gipps, P.G., 1981. "A behavioural car-following model for computer simulation," Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pages 105-111, April.
    2. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
    3. Sadri, A. & Ardehali, M.M. & Amirnekooei, K., 2014. "General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN," Energy, Elsevier, vol. 77(C), pages 831-843.
    4. Rauf, Abdul & Crawford, Robert H., 2015. "Building service life and its effect on the life cycle embodied energy of buildings," Energy, Elsevier, vol. 79(C), pages 140-148.
    5. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Bin & Zhang, Qijun & Hu, Le & Zou, Chao & Wei, Ning & Jia, Zhenyu & Zhao, Xiaoyang & Peng, Jianfei & Mao, Hongjun & Wu, Zhong, 2023. "A prediction-evaluation method for road network energy consumption: Fusion of vehicle energy flow principle and Two-Fluid theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    2. Yavasoglu, H.A. & Tetik, Y.E. & Gokce, K., 2019. "Implementation of machine learning based real time range estimation method without destination knowledge for BEVs," Energy, Elsevier, vol. 172(C), pages 1179-1186.
    3. Hariharan, C. & Gunadevan, D. & Arun Prakash, S. & Latha, K. & Antony Aroul Raj, V. & Velraj, R., 2022. "Simulation of battery energy consumption in an electric car with traction and HVAC model for a given source and destination for reducing the range anxiety of the driver," Energy, Elsevier, vol. 249(C).
    4. Costagliola, Maria Antonietta & Costabile, Marianeve & Prati, Maria Vittoria, 2018. "Impact of road grade on real driving emissions from two Euro 5 diesel vehicles," Applied Energy, Elsevier, vol. 231(C), pages 586-593.
    5. Luin, Blaž & Petelin, Stojan & Al-Mansour, Fouad, 2019. "Microsimulation of electric vehicle energy consumption," Energy, Elsevier, vol. 174(C), pages 24-32.
    6. Hugo Ferreira & Carlos Manuel Rodrigues & Carlos Pinho, 2019. "Impact of Road Geometry on Vehicle Energy Consumption and CO 2 Emissions: An Energy-Efficiency Rating Methodology," Energies, MDPI, vol. 13(1), pages 1-27, December.
    7. Kroyan, Yuri & Wojcieszyk, Michal & Kaario, Ossi & Larmi, Martti & Zenger, Kai, 2020. "Modeling the end-use performance of alternative fuels in light-duty vehicles," Energy, Elsevier, vol. 205(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blaž LUIN & Stojan PETELIN, 2017. "Impact Of Road Geometry On Vehicle Energy Consumption," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 12(2), pages 77-87, June.
    2. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    5. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    6. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    7. Osorio, Carolina & Punzo, Vincenzo, 2019. "Efficient calibration of microscopic car-following models for large-scale stochastic network simulators," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 156-173.
    8. Tattini, Jacopo & Ramea, Kalai & Gargiulo, Maurizio & Yang, Christopher & Mulholland, Eamonn & Yeh, Sonia & Karlsson, Kenneth, 2018. "Improving the representation of modal choice into bottom-up optimization energy system models – The MoCho-TIMES model," Applied Energy, Elsevier, vol. 212(C), pages 265-282.
    9. Bonsall, Peter & Liu, Ronghui & Young, William, 2005. "Modelling safety-related driving behaviour--impact of parameter values," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(5), pages 425-444, June.
    10. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    11. Liu, Chang & Liu, Yuan & Zhang, Dayong & Xie, Chunping, 2022. "The capital market responses to new energy vehicle (NEV) subsidies: An event study on China," Energy Economics, Elsevier, vol. 105(C).
    12. Huang, Zishuo & Yu, Hang & Chu, Xiangyang & Peng, Zhenwei, 2017. "A goal programming based model system for community energy plan," Energy, Elsevier, vol. 134(C), pages 893-901.
    13. Chandle Chae & Youngho Kim, 2023. "Investigation of Following Vehicles’ Driving Patterns Using Spectral Analysis Techniques," Sustainability, MDPI, vol. 15(13), pages 1-15, July.
    14. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2010. "Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 983-1000, September.
    15. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    16. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
    17. Gunay, Banihan, 2007. "Car following theory with lateral discomfort," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 722-735, August.
    18. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2006. "Delays, inaccuracies and anticipation in microscopic traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 71-88.
    19. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2023. "A multi-scale control framework for urban traffic control with connected and automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
    20. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:260-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.