IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v123y2017icp241-251.html
   My bibliography  Save this article

Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel-kerosene-diesel blends

Author

Listed:
  • Bayındır, Hasan
  • Işık, Mehmet Zerrakki
  • Argunhan, Zeki
  • Yücel, Halit Lütfü
  • Aydın, Hüseyin

Abstract

High percentages of biodiesel blends or neat biodiesel cannot be used in diesel engines due to high density and viscosity, and poor atomization properties that lead to some engine operational problems. Biodiesel was produced from canola oil by transesterification process. Test fuels were prepared by blending 80% of the biodiesel with 20% of kerosene (B80&K20) and 80% of the biodiesel with 10% of kerosene and 10% diesel fuel (B80&K10&D10). Fuels were used in a 4 cylinders diesel engine that was loaded with a generator. Combustion, performance and emission characteristics of the blend fuels and D2 in the diesel engine for certain loads of 3.6, 7.2 and 10.8 kW output power and 1500 rpm constant engine speed were experimented and deeply analyzed. It was found that kerosene contained blends had quite similar combustion characteristics with those of D2. Mass fuel consumption and Bscf were slightly increased for blend fuels. HC emissions slightly increased while NOx emissions considerably reduced for blends. It was resulted that high percentages of biodiesel can be a potential substitute for diesel fuel provided that it is used as blending fuel with certain amounts of kerosene.

Suggested Citation

  • Bayındır, Hasan & Işık, Mehmet Zerrakki & Argunhan, Zeki & Yücel, Halit Lütfü & Aydın, Hüseyin, 2017. "Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel-kerosene-diesel blends," Energy, Elsevier, vol. 123(C), pages 241-251.
  • Handle: RePEc:eee:energy:v:123:y:2017:i:c:p:241-251
    DOI: 10.1016/j.energy.2017.01.153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421730169X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhale, Purnanand Vishwanathrao & Deshpande, Nishikant V. & Thombre, Shashikant B., 2009. "Improving the low temperature properties of biodiesel fuel," Renewable Energy, Elsevier, vol. 34(3), pages 794-800.
    2. Roy, Murari Mohon & Wang, Wilson & Bujold, Justin, 2013. "Biodiesel production and comparison of emissions of a DI diesel engine fueled by biodiesel–diesel and canola oil–diesel blends at high idling operations," Applied Energy, Elsevier, vol. 106(C), pages 198-208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loganathan, S. & Leenus Jesu Martin, M. & Nagalingam, B. & Prabhu, L., 2018. "Heat release rate and performance simulation of DME fuelled diesel engine using oxygenate correction factor and load correction factor in double Wiebe function," Energy, Elsevier, vol. 150(C), pages 77-91.
    2. Renas Hasan Saeed Saeed & Youssef Kassem & Hüseyin Çamur, 2019. "Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various ‎Ages on Physicochemical Properties," Energies, MDPI, vol. 12(19), pages 1-26, September.
    3. Bai, Yuanqi & Wang, Ying & Wang, Xiaochen & Zhou, Qiongyang & Duan, Qimeng, 2021. "Development of physical-chemical surrogate models and skeletal mechanism for the spray and combustion simulation of RP-3 kerosene fuels," Energy, Elsevier, vol. 215(PB).
    4. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.
    5. Giancarlo Chiatti & Ornella Chiavola & Fulvio Palmieri, 2019. "Impact on Combustion and Emissions of Jet Fuel as Additive in Diesel Engine Fueled with Blends of Petrol Diesel, Renewable Diesel and Waste Cooking Oil Biodiesel," Energies, MDPI, vol. 12(13), pages 1-14, June.
    6. Katriina Sirviö & Seppo Niemi & Sonja Heikkilä & Jukka Kiijärvi & Michaela Hissa & Erkki Hiltunen, 2019. "Feasibility of New Liquid Fuel Blends for Medium-Speed Engines," Energies, MDPI, vol. 12(14), pages 1-10, July.
    7. Rai, Ranjeet Kumar & Sahoo, Rashmi Rekha, 2019. "Effective power and effective power density analysis for water in diesel emulsion as fuel in diesel engine performance," Energy, Elsevier, vol. 180(C), pages 893-902.
    8. Akram, M. Zuhaib, 2021. "Study of hydrogen impact on lean flammability limit and burning characteristics of a kerosene surrogate," Energy, Elsevier, vol. 231(C).
    9. Çeli̇k, Mehmet & Bayindirli, Cihan, 2020. "Enhancement performance and exhaust emissions of rapeseed methyl ester by using n-hexadecane and n-hexane fuel additives," Energy, Elsevier, vol. 202(C).
    10. Rahman, M.A. & Aziz, Mohammad Abdul, 2021. "Biodiesel from water hyacinth biomass and its influence on CI engine performance, emission, combustion and heat loss characteristics with the induction of hydroxy," Energy, Elsevier, vol. 224(C).
    11. Michaela Hissa & Seppo Niemi & Katriina Sirviö & Antti Niemi & Teemu Ovaska, 2019. "Combustion Studies of a Non-Road Diesel Engine with Several Alternative Liquid Fuels," Energies, MDPI, vol. 12(12), pages 1-15, June.
    12. Wei, Lijiang & Cheng, Rupeng & Mao, Hongjun & Geng, Peng & Zhang, Yanjie & You, Kun, 2018. "Combustion process and NOx emissions of a marine auxiliary diesel engine fuelled with waste cooking oil biodiesel blends," Energy, Elsevier, vol. 144(C), pages 73-80.
    13. Rajak, Upendra & Nashine, Prerana & Verma, Tikendra Nath, 2019. "Characteristics of microalgae spirulina biodiesel with the impact of n-butanol addition on a CI engine," Energy, Elsevier, vol. 189(C).
    14. Gülüm, Mert & Onay, Funda Kutlu & Bilgin, Atilla, 2018. "Comparison of viscosity prediction capabilities of regression models and artificial neural networks," Energy, Elsevier, vol. 161(C), pages 361-369.
    15. Li, Hong-Meng & Li, Guo-Xiu & Jiang, Yan-Huan & Li, Lei & Li, Fu-Sheng, 2018. "Flame stability and propagation characteristics for combustion in air for an equimolar mixture of hydrogen and carbon monoxide in turbulent conditions," Energy, Elsevier, vol. 157(C), pages 76-86.
    16. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    17. Edmundas Kazimieras Zavadskas & Audrius Čereška & Jonas Matijošius & Alfredas Rimkus & Romualdas Bausys, 2019. "Internal Combustion Engine Analysis of Energy Ecological Parameters by Neutrosophic MULTIMOORA and SWARA Methods," Energies, MDPI, vol. 12(8), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    2. Jun Cong Ge & Nag Jung Choi, 2020. "Soot Particle Size Distribution, Regulated and Unregulated Emissions of a Diesel Engine Fueled with Palm Oil Biodiesel Blends," Energies, MDPI, vol. 13(21), pages 1-16, November.
    3. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    4. Wang, Yi-Tong & Fang, Zhen & Yang, Xing-Xia, 2017. "Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid," Applied Energy, Elsevier, vol. 204(C), pages 702-714.
    5. Monirul, I.M. & Kalam, M.A. & Masjuki, H.H. & Zulkifli, N.W.M. & Shahir, S.A. & Mosarof, M.H. & Ruhul, A.M., 2017. "Influence of poly(methyl acrylate) additive on cold flow properties of coconut biodiesel blends and exhaust gas emissions," Renewable Energy, Elsevier, vol. 101(C), pages 702-712.
    6. Dwivedi, Gaurav & Jain, Siddharth & Sharma, M.P., 2011. "Impact analysis of biodiesel on engine performance—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4633-4641.
    7. Dwivedi, Gaurav & Sharma, M.P., 2014. "Impact of cold flow properties of biodiesel on engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 650-656.
    8. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    9. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    10. Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
    11. Chang, Yu-Cheng & Lee, Wen-Jhy & Wang, Lin-Chi & Yang, Hsi-Hsien & Cheng, Man-Ting & Lu, Jau-Huai & Tsai, Ying I. & Young, Li-Hao, 2014. "Effects of waste cooking oil-based biodiesel on the toxic organic pollutant emissions from a diesel engine," Applied Energy, Elsevier, vol. 113(C), pages 631-638.
    12. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends," Applied Energy, Elsevier, vol. 180(C), pages 52-65.
    13. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    14. Mohd Fadzli Hamid & Yew Heng Teoh & Mohamad Yusof Idroas & Mazlan Mohamed & Shukriwani Sa’ad & Sharzali Che Mat & Muhammad Khalil Abdullah & Thanh Danh Le & Heoy Geok How & Huu Tho Nguyen, 2022. "A Review of the Emulsification Method for Alternative Fuels Used in Diesel Engines," Energies, MDPI, vol. 15(24), pages 1-26, December.
    15. Mariusz Niekurzak, 2021. "Determining the Unit Values of the Allocation of Greenhouse Gas Emissions for the Production of Biofuels in the Life Cycle," Energies, MDPI, vol. 14(24), pages 1-18, December.
    16. Thangarasu, Vinoth & M, Angkayarkan Vinayakaselvi & Ramanathan, Anand, 2021. "Artificial neural network approach for parametric investigation of biodiesel synthesis using biocatalyst and engine characteristics of diesel engine fuelled with Aegle Marmelos Correa biodiesel," Energy, Elsevier, vol. 230(C).
    17. kumar, Mukesh & Sharma, Mahendra Pal, 2016. "Selection of potential oils for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1129-1138.
    18. Mourad, M. & Mahmoud, K., 2019. "Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends," Renewable Energy, Elsevier, vol. 143(C), pages 762-771.
    19. Misra, R.D. & Murthy, M.S., 2011. "Blending of additives with biodiesels to improve the cold flow properties, combustion and emission performance in a compression ignition engine--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2413-2422, June.
    20. Srikanth, H.V. & Venkatesh, J. & Godiganur, Sharanappa & Manne, Bhaskar, 2019. "Acetone and Diethyl ether: Improve cold flow properties of Dairy Washed Milkscum biodiesel," Renewable Energy, Elsevier, vol. 130(C), pages 446-451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:123:y:2017:i:c:p:241-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.