IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v47y2012icp156-163.html
   My bibliography  Save this article

Energy management under policy and technology uncertainty

Author

Listed:
  • Tylock, Steven M.
  • Seager, Thomas P.
  • Snell, Jeff
  • Bennett, Erin R.
  • Sweet, Don

Abstract

Energy managers in public agencies are subject to multiple and sometimes conflicting policy objectives regarding cost, environmental, and security concerns associated with alternative energy technologies. Making infrastructure investment decisions requires balancing different distributions of risks and benefits that are far from clear. For example, managers at permanent Army installations must incorporate Congressional legislative objectives, executive orders, Department of Defense directives, state laws and regulations, local restrictions, and multiple stakeholder concerns when undertaking new energy initiatives. Moreover, uncertainty with regard to alternative energy technologies is typically much greater than that associated with traditional technologies, both because the technologies themselves are continuously evolving and because the intermittent nature of many renewable technologies makes a certain level of uncertainty irreducible. This paper describes a novel stochastic multi-attribute analytic approach that allows users to explore different priorities or weighting schemes in combination with uncertainties related to technology performance. To illustrate the utility of this approach for understanding conflicting policy or stakeholder perspectives, prioritizing the need for more information, and making investment decisions, we apply this approach to an energy technology decision problem representative of a permanent military base.

Suggested Citation

  • Tylock, Steven M. & Seager, Thomas P. & Snell, Jeff & Bennett, Erin R. & Sweet, Don, 2012. "Energy management under policy and technology uncertainty," Energy Policy, Elsevier, vol. 47(C), pages 156-163.
  • Handle: RePEc:eee:enepol:v:47:y:2012:i:c:p:156-163
    DOI: 10.1016/j.enpol.2012.04.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151200345X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.04.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tervonen, Tommi & Lahdelma, Risto, 2007. "Implementing stochastic multicriteria acceptability analysis," European Journal of Operational Research, Elsevier, vol. 178(2), pages 500-513, April.
    2. Lahdelma, Risto & Miettinen, Kaisa & Salminen, Pekka, 2005. "Reference point approach for multiple decision makers," European Journal of Operational Research, Elsevier, vol. 164(3), pages 785-791, August.
    3. Lahdelma, Risto & Hokkanen, Joonas & Salminen, Pekka, 1998. "SMAA - Stochastic multiobjective acceptability analysis," European Journal of Operational Research, Elsevier, vol. 106(1), pages 137-143, April.
    4. Risto Lahdelma & Pekka Salminen, 2001. "SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making," Operations Research, INFORMS, vol. 49(3), pages 444-454, June.
    5. Greening, Lorna A. & Bernow, Steve, 2004. "Design of coordinated energy and environmental policies: use of multi-criteria decision-making," Energy Policy, Elsevier, vol. 32(6), pages 721-735, April.
    6. Tervonen, Tommi & Figueira, José Rui & Lahdelma, Risto & Dias, Juscelino Almeida & Salminen, Pekka, 2009. "A stochastic method for robustness analysis in sorting problems," European Journal of Operational Research, Elsevier, vol. 192(1), pages 236-242, January.
    7. Løken, Espen, 2007. "Use of multicriteria decision analysis methods for energy planning problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1584-1595, September.
    8. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Pelissari & M. C. Oliveira & S. Ben Amor & A. Kandakoglu & A. L. Helleno, 2020. "SMAA methods and their applications: a literature review and future research directions," Annals of Operations Research, Springer, vol. 293(2), pages 433-493, October.
    2. Z. A. Collier & D. Wang & J. T. Vogel & E. K. Tatham & I. Linkov, 2013. "Sustainable roofing technology under multiple constraints: a decision-analytical approach," Environment Systems and Decisions, Springer, vol. 33(2), pages 261-271, June.
    3. Silvia Angilella & Maria Rosaria Pappalardo, 2022. "Performance assessment of energy companies employing Hierarchy Stochastic Multi-Attribute Acceptability Analysis," Operational Research, Springer, vol. 22(1), pages 299-370, March.
    4. Donald J. Jenkins & Jeffrey M. Keisler, 2022. "A decision analytic tool for corporate strategic sustainable energy purchases," Environment Systems and Decisions, Springer, vol. 42(4), pages 504-520, December.
    5. Haichao Wang & Wenling Jiao & Risto Lahdelma & Chuanzhi Zhu & Pinghua Zou, 2014. "Stochastic Multicriteria Acceptability Analysis for Evaluation of Combined Heat and Power Units," Energies, MDPI, vol. 8(1), pages 1-20, December.
    6. Kostevšek, Anja & Petek, Janez & Čuček, Lidija & Pivec, Aleksandra, 2013. "Conceptual design of a municipal energy and environmental system as an efficient basis for advanced energy planning," Energy, Elsevier, vol. 60(C), pages 148-158.
    7. Dassisti, M. & Carnimeo, L., 2013. "A small-world methodology of analysis of interchange energy-networks: The European behaviour in the economical crisis," Energy Policy, Elsevier, vol. 63(C), pages 887-899.
    8. Shekarchian, M. & Moghavvemi, M. & Zarifi, F. & Moghavvemi, S. & Motasemi, F. & Mahlia, T.M.I., 2017. "Impact of infrastructural policies to reduce travel time expenditure of car users with significant reductions in energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 327-335.
    9. Hamilton, Michelle C. & Lambert, James H. & Connelly, Elizabeth B. & Barker, Kash, 2016. "Resilience analytics with disruption of preferences and lifecycle cost analysis for energy microgrids," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 11-21.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Pelissari & M. C. Oliveira & S. Ben Amor & A. Kandakoglu & A. L. Helleno, 2020. "SMAA methods and their applications: a literature review and future research directions," Annals of Operations Research, Springer, vol. 293(2), pages 433-493, October.
    2. Wulf, David & Bertsch, Valentin, 2016. "A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making," MPRA Paper 75025, University Library of Munich, Germany.
    3. Menou, Abdellah & Benallou, Abdelhanine & Lahdelma, Risto & Salminen, Pekka, 2010. "Decision support for centralizing cargo at a Moroccan airport hub using stochastic multicriteria acceptability analysis," European Journal of Operational Research, Elsevier, vol. 204(3), pages 621-629, August.
    4. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    5. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2018. "σ-µ efficiency analysis: A new methodology for evaluating units through composite indices," MPRA Paper 83569, University Library of Munich, Germany.
    6. Pelissari, Renata & Oliveira, Maria Célia & Ben Amor, Sarah & Abackerli, Alvaro José, 2019. "A new FlowSort-based method to deal with information imperfections in sorting decision-making problems," European Journal of Operational Research, Elsevier, vol. 276(1), pages 235-246.
    7. Durbach, Ian N., 2009. "The use of the SMAA acceptability index in descriptive decision analysis," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1229-1237, August.
    8. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    9. García Cáceres, Rafael Guillermo & Aráoz Durand, Julián Arturo & Gómez, Fernando Palacios, 2009. "Integral analysis method - IAM," European Journal of Operational Research, Elsevier, vol. 192(3), pages 891-903, February.
    10. Podinovski, Vladislav V., 2020. "Maximum likelihood solutions for multicriterial choice problems," European Journal of Operational Research, Elsevier, vol. 286(1), pages 299-308.
    11. Zhu, Bin & Xu, Zeshui, 2014. "Stochastic preference analysis in numerical preference relations," European Journal of Operational Research, Elsevier, vol. 237(2), pages 628-633.
    12. Olivier Cailloux & Tommi Tervonen & Boris Verhaegen & François Picalausa, 2014. "A data model for algorithmic multiple criteria decision analysis," Annals of Operations Research, Springer, vol. 217(1), pages 77-94, June.
    13. Luis C. Dias & Carolina Passeira & João Malça & Fausto Freire, 2022. "Integrating life-cycle assessment and multi-criteria decision analysis to compare alternative biodiesel chains," Annals of Operations Research, Springer, vol. 312(2), pages 1359-1374, May.
    14. Hernandez-Perdomo, Elvis A. & Mun, Johnathan & Rocco S., Claudio M., 2017. "Active management in state-owned energy companies: Integrating a real options approach into multicriteria analysis to make companies sustainable," Applied Energy, Elsevier, vol. 195(C), pages 487-502.
    15. Haichao Wang & Wenling Jiao & Risto Lahdelma & Chuanzhi Zhu & Pinghua Zou, 2014. "Stochastic Multicriteria Acceptability Analysis for Evaluation of Combined Heat and Power Units," Energies, MDPI, vol. 8(1), pages 1-20, December.
    16. Raffaele Lagravinese & Paolo Liberati & Giuliano Resce, 2017. "Exploring health outcomes by stochastic multi-objective acceptability analysis: an application to Italian regions," Working Papers. Collection B: Regional and sectoral economics 1703, Universidade de Vigo, GEN - Governance and Economics research Network.
    17. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.
    18. Giuseppe Coco & Raffaele Lagravinese & Giuliano Resce, 2020. "Beyond the weights: a multicriteria approach to evaluate inequality in education," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 18(4), pages 469-489, December.
    19. Song, Shiling & Yang, Feng & Yu, Pingxiang & Xie, Jianhui, 2021. "Stochastic multi-attribute acceptability analysis with numerous alternatives," European Journal of Operational Research, Elsevier, vol. 295(2), pages 621-633.
    20. Yang, Feng & Ang, Sheng & Xia, Qiong & Yang, Chenchen, 2012. "Ranking DMUs by using interval DEA cross efficiency matrix with acceptability analysis," European Journal of Operational Research, Elsevier, vol. 223(2), pages 483-488.

    More about this item

    Keywords

    MCDA; Uncertainty; Stakeholders;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:47:y:2012:i:c:p:156-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.