IDEAS home Printed from
   My bibliography  Save this article

Fuzzy comprehensive evaluation of district heating systems


  • Wei, Bing
  • Wang, Song-Ling
  • Li, Li


Selecting the optimal type of district heating (DH) system is of great importance because different heating systems have different levels of efficiency, which will impact the system economics, environment and energy use. In this study, seven DH systems were analysed and evaluated by the fuzzy comprehensive evaluation method. The dimensionless number--goodness was introduced into the calculation, the economics, environment and energy technology factors were considered synthetically, and the final goodness values were obtained. The results show that if only one of the economics, environment or energy technology factors are considered, different heating systems have different goodness values. When all three factors were taken into account, the final ranking of goodness values was: combined heating and power>gas-fired boiler>water-source heat pump>coal-fired boiler>ground-source heat pump>solar-energy heat pump>oil-fired boiler. The combined heating and power system is the best choice from all seven systems; the gas-fired boiler system is the best of the three boiler systems for heating purpose; and the water-source heat pump is the best of the three heat pump systems for heating and cooling.

Suggested Citation

  • Wei, Bing & Wang, Song-Ling & Li, Li, 2010. "Fuzzy comprehensive evaluation of district heating systems," Energy Policy, Elsevier, vol. 38(10), pages 5947-5955, October.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:10:p:5947-5955

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Difs, Kristina & Danestig, Maria & Trygg, Louise, 2009. "Increased use of district heating in industrial processes - Impacts on heat load duration," Applied Energy, Elsevier, vol. 86(11), pages 2327-2334, November.
    2. Georgiev, A., 2008. "Testing solar collectors as an energy source for a heat pump," Renewable Energy, Elsevier, vol. 33(4), pages 832-838.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:energy:v:137:y:2017:i:c:p:1231-1251 is not listed on IDEAS
    2. Guo, Jin & Huang, Ying & Wei, Chu, 2015. "North–South debate on district heating: Evidence from a household survey," Energy Policy, Elsevier, vol. 86(C), pages 295-302.
    3. Shamshirband, Shahaboddin & Petković, Dalibor & Enayatifar, Rasul & Hanan Abdullah, Abdul & Marković, Dušan & Lee, Malrey & Ahmad, Rodina, 2015. "Heat load prediction in district heating systems with adaptive neuro-fuzzy method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 760-767.
    4. Keçebaş, Ali & Alkan, Mehmet Ali & Yabanova, İsmail & Yumurtacı, Mehmet, 2013. "Energetic and economic evaluations of geothermal district heating systems by using ANN," Energy Policy, Elsevier, vol. 56(C), pages 558-567.
    5. repec:eee:appene:v:205:y:2017:i:c:p:345-368 is not listed on IDEAS
    6. Wang, Hai-Chao & Jiao, Wen-Ling & Lahdelma, Risto & Zou, Ping-Hua, 2011. "Techno-economic analysis of a coal-fired CHP based combined heating system with gas-fired boilers for peak load compensation," Energy Policy, Elsevier, vol. 39(12), pages 7950-7962.
    7. Huiru Zhao & Nana Li, 2015. "Risk Evaluation of a UHV Power Transmission Construction Project Based on a Cloud Model and FCE Method for Sustainability," Sustainability, MDPI, Open Access Journal, vol. 7(3), pages 1-30, March.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:10:p:5947-5955. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.