IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i7p2415-2429.html
   My bibliography  Save this article

A mathematical programming framework for energy planning in services' sector buildings under uncertainty in load demand: The case of a hospital in Athens

Author

Listed:
  • Mavrotas, George
  • Diakoulaki, Danae
  • Florios, Kostas
  • Georgiou, Paraskevas

Abstract

The aim of this paper is to provide an integrated modeling and optimization framework for energy planning in large consumers of the services' sector based on mathematical programming. The power demand is vaguely known and the underlying uncertainty is modeled using elements from fuzzy set theory. The defined fuzzy programming model is subsequently transformed to an equivalent multi-objective problem, where the minimization of cost and the maximization of demand satisfaction are the objective functions. The Pareto optimal solutions of this problem are obtained using a novel version of the [epsilon]-constraint method and represent the possibly optimal solutions of the original problem under uncertainty. In the present case, in order to select the most preferred Pareto optimal solution, the minimax regret criterion is properly used to indicate the preferred configuration of the system (i.e. the size of the installed units) given the load uncertainty. Furthermore, the paper proposes a model reduction technique that can be used in similar cases and further examines its effect in the final results. The above methodology is applied to the energy rehabilitation of a hospital in the Athens area. The technologies under consideration include a combined heat and power unit for providing power and heat, an absorption unit and/or a compression unit for providing cooling load. The obtained results demonstrate that, increasing the degree of demand satisfaction, the total annual cost increases almost linearly. Although data compression allows obtaining realistic results, the size of the proposed units might be slightly changed.

Suggested Citation

  • Mavrotas, George & Diakoulaki, Danae & Florios, Kostas & Georgiou, Paraskevas, 2008. "A mathematical programming framework for energy planning in services' sector buildings under uncertainty in load demand: The case of a hospital in Athens," Energy Policy, Elsevier, vol. 36(7), pages 2415-2429, July.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:7:p:2415-2429
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00010-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A O Kazakçi & S Rozakis & D Vanderpooten, 2007. "Energy crop supply in France: a min-max regret approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1470-1479, November.
    2. Liu, Ming Long & Sahinidis, Nikolaos V., 1997. "Process planning in a fuzzy environment," European Journal of Operational Research, Elsevier, vol. 100(1), pages 142-169, July.
    3. Antunes, C.Henggeler & Martins, A.Gomes & Brito, Isabel Sofia, 2004. "A multiple objective mixed integer linear programming model for power generation expansion planning," Energy, Elsevier, vol. 29(4), pages 613-627.
    4. JosÉ Figueira & Salvatore Greco & Matthias Ehrogott, 2005. "Multiple Criteria Decision Analysis: State of the Art Surveys," International Series in Operations Research and Management Science, Springer, number 978-0-387-23081-8, December.
    5. Kavrakoglu, Ibrahim, 1987. "Energy models," European Journal of Operational Research, Elsevier, vol. 28(2), pages 121-131, February.
    6. Oliveira, Carla & Antunes, Carlos Henggeler, 2004. "A multiple objective model to deal with economy-energy-environment interactions," European Journal of Operational Research, Elsevier, vol. 153(2), pages 370-385, March.
    7. H E Mausser & M Laguna, 1999. "Minimising the maximum relative regret for linear programmes with interval objective function coefficients," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(10), pages 1063-1070, October.
    8. Rath-Nagel, St. & Voss, A., 1981. "Energy models for planning and policy assessment," European Journal of Operational Research, Elsevier, vol. 8(2), pages 99-114, October.
    9. Burer, M. & Tanaka, K. & Favrat, D. & Yamada, K., 2003. "Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell–gas turbine combined cycle, heat pumps and chillers," Energy, Elsevier, vol. 28(6), pages 497-518.
    10. Rommelfanger, Heinrich, 1996. "Fuzzy linear programming and applications," European Journal of Operational Research, Elsevier, vol. 92(3), pages 512-527, August.
    11. P Linares & C Romero, 2000. "A multiple criteria decision making approach for electricity planning in Spain: economic versus environmental objectives," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(6), pages 736-743, June.
    12. Schulz, Volkhard & Stehfest, Harald, 1984. "Regional energy supply optimization with multiple objectives," European Journal of Operational Research, Elsevier, vol. 17(3), pages 302-312, September.
    13. Danae Diakoulaki & Carlos Henggeler Antunes & António Gomes Martins, 2005. "MCDA and Energy Planning," International Series in Operations Research & Management Science, in: Multiple Criteria Decision Analysis: State of the Art Surveys, chapter 0, pages 859-890, Springer.
    14. Kavrakoglu, Ibrahim & Kiziltan, Gulseren, 1983. "Multiobjective strategies in power systems planning," European Journal of Operational Research, Elsevier, vol. 12(2), pages 159-170, February.
    15. Meier, Peter & Mubayi, Vinod, 1983. "Modelling energy-economic interactions in developing countries: A linear programming approach," European Journal of Operational Research, Elsevier, vol. 13(1), pages 41-59, May.
    16. Inuiguchi, Masahiro & Sakawa, Masatoshi, 1995. "Minimax regret solution to linear programming problems with an interval objective function," European Journal of Operational Research, Elsevier, vol. 86(3), pages 526-536, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mavrotas, George & Florios, Kostas & Vlachou, Dimitra, 2010. "Energy planning of a hospital using Mathematical Programming and Monte Carlo simulation for dealing with uncertainty in the economic parameters," MPRA Paper 105754, University Library of Munich, Germany.
    2. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Decision analysis in energy and environmental modeling: An update," Energy, Elsevier, vol. 31(14), pages 2604-2622.
    3. Heinrich, G. & Basson, L. & Cohen, B. & Howells, M. & Petrie, J., 2007. "Ranking and selection of power expansion alternatives for multiple objectives under uncertainty," Energy, Elsevier, vol. 32(12), pages 2350-2369.
    4. Raupp, I. & Costa, F., 2021. "Hydropower expansion planning in Brazil - Environmental improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Madlener, Reinhard & Stagl, Sigrid, 2005. "Sustainability-guided promotion of renewable electricity generation," Ecological Economics, Elsevier, vol. 53(2), pages 147-167, April.
    6. J. Cabello & M. Luque & F. Miguel & A. Ruiz & F. Ruiz, 2014. "A multiobjective interactive approach to determine the optimal electricity mix in Andalucía (Spain)," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 109-127, April.
    7. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    8. Georgopoulou, E. & Sarafidis, Y. & Diakoulaki, D., 1998. "Design and implementation of a group DSS for sustaining renewable energies exploitation," European Journal of Operational Research, Elsevier, vol. 109(2), pages 483-500, September.
    9. Kayakutlu, Gulgun & Daim, Tugrul & Kunt, Meltem & Altay, Ayca & Suharto, Yulianto, 2017. "Scenarios for regional waste management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1323-1335.
    10. Manley, Dawn K. & Hines, Valerie A. & Jordan, Matthew W. & Stoltz, Ronald E., 2013. "A survey of energy policy priorities in the United States: Energy supply security, economics, and the environment," Energy Policy, Elsevier, vol. 60(C), pages 687-696.
    11. Ramachandra, T.V., 2009. "RIEP: Regional integrated energy plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 285-317, February.
    12. Rozakis, Stelios, 2011. "Impacts of flatter rates and environmental top-ups in Greece: A novel mathematical modeling approach," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 12(2).
    13. Wulf, David & Bertsch, Valentin, 2016. "A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making," MPRA Paper 75025, University Library of Munich, Germany.
    14. Harish, V.S.K.V. & Kumar, Arun, 2016. "A review on modeling and simulation of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1272-1292.
    15. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2016. "Optimization modeling to support renewables integration in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 316-325.
    16. Gamboa, Gonzalo & Munda, Giuseppe, 2007. "The problem of windfarm location: A social multi-criteria evaluation framework," Energy Policy, Elsevier, vol. 35(3), pages 1564-1583, March.
    17. Zhu, H. & Huang, W.W. & Huang, G.H., 2014. "Planning of regional energy systems: An inexact mixed-integer fractional programming model," Applied Energy, Elsevier, vol. 113(C), pages 500-514.
    18. Höfer, Tim & Madlener, Reinhard, 2020. "A participatory stakeholder process for evaluating sustainable energy transition scenarios," Energy Policy, Elsevier, vol. 139(C).
    19. Arnette, Andrew & Zobel, Christopher W., 2012. "An optimization model for regional renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4606-4615.
    20. Chinese, Damiana & Meneghetti, Antonella, 2005. "Optimisation models for decision support in the development of biomass-based industrial district-heating networks in Italy," Applied Energy, Elsevier, vol. 82(3), pages 228-254, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:7:p:2415-2429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.