The impact of artificial intelligence development on embodied carbon emissions: Perspectives from the production and consumption sides
Author
Abstract
Suggested Citation
DOI: 10.1016/j.enpol.2025.114535
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chao-Chung Hsu & Bi-Hai Jiang & Chun-Cheng Lin, 2023. "A Survey on Recent Applications of Artificial Intelligence and Optimization for Smart Grids in Smart Manufacturing," Energies, MDPI, vol. 16(22), pages 1-15, November.
- Michael Jakob & Robert Marschinski, 2013. "Interpreting trade-related CO2 emission transfers," Nature Climate Change, Nature, vol. 3(1), pages 19-23, January.
- Lyu, Hengyu & Ma, Chunai & Arash, Farnoosh, 2024. "Central environmental protection inspection, green technology innovation and carbon intensity of industrial enterprises – Empirical research based on multi-period differences-in-differences model," Energy, Elsevier, vol. 307(C).
- Wang, Jianda & Yang, Senmiao & Dong, Kangyin & Nepal, Rabindra, 2024. "Assessing embodied carbon emission and its drivers in China's ICT sector: Multi-regional input-output and structural decomposition analysis," Energy Policy, Elsevier, vol. 186(C).
- Gabriela Badareu & Marius Dalian Doran & Mihai Alexandru Firu & Ionuț Marius Croitoru & Nicoleta Mihaela Doran, 2024. "Exploring the Role of Robots and Artificial Intelligence in Advancing Renewable Energy Consumption," Energies, MDPI, vol. 17(17), pages 1-17, September.
- Shi, Zhongtuo & Yao, Wei & Li, Zhouping & Zeng, Lingkang & Zhao, Yifan & Zhang, Runfeng & Tang, Yong & Wen, Jinyu, 2020. "Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions," Applied Energy, Elsevier, vol. 278(C).
- Liu, Jun & Liu, Liang & Qian, Yu & Song, Shunfeng, 2022. "The effect of artificial intelligence on carbon intensity: Evidence from China's industrial sector," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
- Quentin André & Ziv Carmon & Klaus Wertenbroch & Alia Crum & Douglas Frank & William Goldstein & Joel Huber & Leaf Boven & Bernd Weber & Haiyang Yang, 2018. "Consumer Choice and Autonomy in the Age of Artificial Intelligence and Big Data," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 28-37, March.
- Wang, Jianlong & Wang, Weilong & Liu, Yong & Wu, Haitao, 2023. "Can industrial robots reduce carbon emissions? Based on the perspective of energy rebound effect and labor factor flow in China," Technology in Society, Elsevier, vol. 72(C).
- Xianpu Xu & Yuchen Song, 2023. "Is There a Conflict between Automation and Environment? Implications of Artificial Intelligence for Carbon Emissions in China," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
- Ramesh Chandra, 2004. "Adam Smith, Allyn Young, and the Division of Labor," Journal of Economic Issues, Taylor & Francis Journals, vol. 38(3), pages 787-805, September.
- Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
- Izabela Rojek & Adam Mroziński & Piotr Kotlarz & Marek Macko & Dariusz Mikołajewski, 2023. "AI-Based Computational Model in Sustainable Transformation of Energy Markets," Energies, MDPI, vol. 16(24), pages 1-26, December.
- Lee, Chien-Chiang & Yan, Jingyang, 2024. "Will artificial intelligence make energy cleaner? Evidence of nonlinearity," Applied Energy, Elsevier, vol. 363(C).
- Chao Ding & Jing Ke & Mark Levine & Nan Zhou, 2024. "Potential of artificial intelligence in reducing energy and carbon emissions of commercial buildings at scale," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Su, Min & Wang, Qiang & Li, Rongrong & Wang, Lili, 2022. "Per capita renewable energy consumption in 116 countries: The effects of urbanization, industrialization, GDP, aging, and trade openness," Energy, Elsevier, vol. 254(PB).
- Wang, En-Ze & Lee, Chien-Chiang & Li, Yaya, 2022. "Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries," Energy Economics, Elsevier, vol. 105(C).
- Ouyang, Xiaoling & Li, Qiong & Du, Kerui, 2020. "How does environmental regulation promote technological innovations in the industrial sector? Evidence from Chinese provincial panel data," Energy Policy, Elsevier, vol. 139(C).
- Li, Guangpei & Wang, Xiaoyu & Su, Shibin & Su, Yuan, 2019. "How green technological innovation ability influences enterprise competitiveness," Technology in Society, Elsevier, vol. 59(C).
- Liu, Liang & Yang, Kun & Fujii, Hidemichi & Liu, Jun, 2021.
"Artificial intelligence and energy intensity in China’s industrial sector: Effect and transmission channel,"
Economic Analysis and Policy, Elsevier, vol. 70(C), pages 276-293.
- Liu, Liang & Yang, Kun & Fujii, Hidemichi & Liu, Jun, 2021. "Artificial Intelligence and Energy Intensity in China’s Industrial Sector: Effect and Transmission Channel," MPRA Paper 106333, University Library of Munich, Germany.
- Huakun Huang & Dingrong Dai & Longtao Guo & Sihui Xue & Huijun Wu, 2023. "AI and Big Data-Empowered Low-Carbon Buildings: Challenges and Prospects," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
- Guan, Chunxu & Lin, Boqiang, 2024. "Do consumers concern about energy saving in purchasing energy-efficient home appliances? Evidence from online e-commerce review," Energy Policy, Elsevier, vol. 193(C).
- Guo, Jianxin & Zhu, Kaiwei & Cheng, Yonglong, 2024. "Deployment of clean energy technologies towards carbon neutrality under resource constraints," Energy, Elsevier, vol. 295(C).
- Hao Lv & Beibei Shi & Nan Li & Rong Kang, 2022. "Intelligent Manufacturing and Carbon Emissions Reduction: Evidence from the Use of Industrial Robots in China," IJERPH, MDPI, vol. 19(23), pages 1-20, November.
- Lara Waltersmann & Steffen Kiemel & Julian Stuhlsatz & Alexander Sauer & Robert Miehe, 2021. "Artificial Intelligence Applications for Increasing Resource Efficiency in Manufacturing Companies—A Comprehensive Review," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lin, Boqiang & Xu, Chongchong, 2024. "Enhancing energy-environmental performance through industrial intelligence: Insights from Chinese prefectural-level cities," Applied Energy, Elsevier, vol. 365(C).
- Lin, Boqiang & Xu, Chongchong, 2024. "The effects of industrial robots on firm energy intensity: From the perspective of technological innovation and electrification," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
- Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
- Chen, Pengyu & Chu, Zhongzhu & Zhao, Miao, 2024. "The Road to corporate sustainability: The importance of artificial intelligence," Technology in Society, Elsevier, vol. 76(C).
- Zhu, Qingyuan & Sun, Chenhao & Xu, Chengzhen & Geng, Qianqian, 2025. "The impact of artificial intelligence on global energy vulnerability," Economic Analysis and Policy, Elsevier, vol. 85(C), pages 15-27.
- Niu, Xiaotong & Lin, Changao & He, Shanshan & Yang, Youcai, 2025. "Artificial intelligence and enterprise pollution emissions: From the perspective of energy transition," Energy Economics, Elsevier, vol. 144(C).
- Wang, Jianlong & Wang, Weilong & Liu, Yong & Wu, Haitao, 2023. "Can industrial robots reduce carbon emissions? Based on the perspective of energy rebound effect and labor factor flow in China," Technology in Society, Elsevier, vol. 72(C).
- Hui Tian & Jiaqi Qin & Chaoyin Cheng & Sohail Ahmad Javeed & Tiansi Chu, 2024. "Towards low‐carbon sustainable development under Industry 4.0: The influence of industrial intelligence on China's carbon mitigation," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 455-480, February.
- Lee, Chien-Chiang & Zou, Jinyang & Chen, Pei-Fen, 2025. "The impact of artificial intelligence on the energy consumption of corporations: The role of human capital," Energy Economics, Elsevier, vol. 143(C).
- Manal Elhaj & Jihen Bousrih & Hind Alofaysan, 2024. "Can Technological Advancement Empower the Future of Renewable Energy? A Panel Autoregressive Distributed Lag Approach," Energies, MDPI, vol. 17(20), pages 1-18, October.
- Huang, Yujie & Liu, Shucheng & Gan, Jiawu & Liu, Baoliu & Wu, Yuxi, 2024. "How does the construction of new generation of national AI innovative development pilot zones drive enterprise ESG development? Empirical evidence from China," Energy Economics, Elsevier, vol. 140(C).
- Hongjun Cao & Yuxin Fang & Jihui Sun, 2022. "A Study on the Impact of Institutional Support on the Servitization Transformation Performance of Manufacturing Firms—Based on a Dual Mediation Model of Business Model Innovation and Technological Inn," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
- Lee, Chien-Chiang & Xuan, Chengnan & Wang, Fuhao, 2024. "Natural resources and green economic growth: The role of artificial intelligence," Resources Policy, Elsevier, vol. 98(C).
- Li, Hongyu & Lu, Zhiqiang & Zhang, Zhengping & Tanasescu, Cristina, 2025. "How does artificial intelligence affect manufacturing firms' energy intensity?," Energy Economics, Elsevier, vol. 141(C).
- Zeng, Ming & Zhang, Weike, 2024. "Green finance: The catalyst for artificial intelligence and energy efficiency in Chinese urban sustainable development," Energy Economics, Elsevier, vol. 139(C).
- Zi Hui Yin & Wei Ping Zeng, 2024. "Path to sustainable development: Can industrial intelligence and technological innovation balance economic growth and environmental quality in China?," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(5), pages 4486-4504, October.
- Zhang, Weike & Zeng, Ming, 2024. "Is artificial intelligence a curse or a blessing for enterprise energy intensity? Evidence from China," Energy Economics, Elsevier, vol. 134(C).
- Zhu, Huayou & Bao, Weiping & Yu, Guojun, 2024. "How can intelligent manufacturing lead enterprise low-carbon transformation? Based on China's intelligent manufacturing demonstration projects," Energy, Elsevier, vol. 313(C).
- Ding, Tao & Li, Hao & Liu, Li & Feng, Kui, 2024. "An inquiry into the nexus between artificial intelligence and energy poverty in the light of global evidence," Energy Economics, Elsevier, vol. 136(C).
- Zhang, Xiaojing & Khan, Khalid & Shao, Xuefeng & Oprean-Stan, Camelia & Zhang, Qian, 2024. "The rising role of artificial intelligence in renewable energy development in China," Energy Economics, Elsevier, vol. 132(C).
More about this item
Keywords
Artificial intelligence; Embodied carbon emissions; Production side; Consumption side; Multi-regional input-output;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:199:y:2025:i:c:s0301421525000424. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.