IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v188y2024ics0301421524000703.html
   My bibliography  Save this article

How to choose a suitable network tariff? - Evaluating network tariffs under increasing integration of distributed energy resources

Author

Listed:
  • Heider, Anya
  • Huber, Jill
  • Farhat, Yamshid
  • Hertig, Yves
  • Hug, Gabriela

Abstract

In a changing power system with increasing penetrations of distributed energy resources, traditional network tariffs might not be able to meet the underlying requirements. Therefore, it is necessary to assess suitable alternatives. We propose a new two-stage process and evaluation framework to support an informed decision process and test them in a Swiss environment. In the first stage, stakeholder interviews determine the relevant design criteria. In the second step, these are translated into a quantitative evaluation framework. The single indicators are weighted by expert weighting, following the analytic hierarchy process, to arrive at the final ranking. The application in a case study shows that the final ranking of the examined tariff structures depends on expert weighting. It is therefore vital to work on a shared understanding of the importance of the different criteria. Moreover, in a scenario with high shares of distributed energy resources, the volumetric tariff shows the lowest performance independent of expert weighting. This result stresses the importance of adapting network tariffs for a future power system with high penetrations of distributed energy sources. Our open-source evaluation tool can help with an informed and transparent decision process.

Suggested Citation

  • Heider, Anya & Huber, Jill & Farhat, Yamshid & Hertig, Yves & Hug, Gabriela, 2024. "How to choose a suitable network tariff? - Evaluating network tariffs under increasing integration of distributed energy resources," Energy Policy, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:enepol:v:188:y:2024:i:c:s0301421524000703
    DOI: 10.1016/j.enpol.2024.114050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421524000703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kendziorski, Mario & Göke, Leonard & von Hirschhausen, Christian & Kemfert, Claudia & Zozmann, Elmar, 2022. "Centralized and decentral approaches to succeed the 100% energiewende in Germany in the European context – A model-based analysis of generation, network, and storage investments," Energy Policy, Elsevier, vol. 167(C).
    2. Ansarin, Mohammad & Ghiassi-Farrokhfal, Yashar & Ketter, Wolfgang & Collins, John, 2020. "The economic consequences of electricity tariff design in a renewable energy era," Applied Energy, Elsevier, vol. 275(C).
    3. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    4. Ibtihal Abdelmotteleb & Tomás Gómez & Javier Reneses, 2017. "Evaluation Methodology for Tariff Design under Escalating Penetrations of Distributed Energy Resources," Energies, MDPI, vol. 10(6), pages 1-16, June.
    5. Savelli, Iacopo & De Paola, Antonio & Li, Furong, 2020. "Ex-ante dynamic network tariffs for transmission cost recovery," Applied Energy, Elsevier, vol. 258(C).
    6. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    7. Wedley, William C., 1990. "Combining qualitative and quantitative factors--an analytic hierarchy approach," Socio-Economic Planning Sciences, Elsevier, vol. 24(1), pages 57-64.
    8. Young, Sharon & Bruce, Anna & MacGill, Iain, 2019. "Potential impacts of residential PV and battery storage on Australia's electricity networks under different tariffs," Energy Policy, Elsevier, vol. 128(C), pages 616-627.
    9. Vaughan, Jim & Doumen, Sjoerd C. & Kok, Koen, 2023. "Empowering tomorrow, controlling today: A multi-criteria assessment of distribution grid tariff designs," Applied Energy, Elsevier, vol. 341(C).
    10. Hennig, Roman J. & Ribó-Pérez, David & de Vries, Laurens J. & Tindemans, Simon H., 2022. "What is a good distribution network tariff?—Developing indicators for performance assessment," Applied Energy, Elsevier, vol. 318(C).
    11. Okur, Özge & Voulis, Nina & Heijnen, Petra & Lukszo, Zofia, 2019. "Aggregator-mediated demand response: Minimizing imbalances caused by uncertainty of solar generation," Applied Energy, Elsevier, vol. 247(C), pages 426-437.
    12. Jesse D. Jenkins & Ignacio J. Pérez-Arriaga, 2017. "Improved Regulatory Approaches for the Remuneration of Electricity Distribution Utilities with High Penetrations of Distributed Energy Resources," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    13. El Gohary, Fouad & Stikvoort, Britt & Bartusch, Cajsa, 2023. "Evaluating demand charges as instruments for managing peak-demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Neuteleers, Stijn & Mulder, Machiel & Hindriks, Frank, 2017. "Assessing fairness of dynamic grid tariffs," Energy Policy, Elsevier, vol. 108(C), pages 111-120.
    15. Schittekatte, Tim & Momber, Ilan & Meeus, Leonardo, 2018. "Future-proof tariff design: Recovering sunk grid costs in a world where consumers are pushing back," Energy Economics, Elsevier, vol. 70(C), pages 484-498.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hennig, Roman J. & Ribó-Pérez, David & de Vries, Laurens J. & Tindemans, Simon H., 2022. "What is a good distribution network tariff?—Developing indicators for performance assessment," Applied Energy, Elsevier, vol. 318(C).
    2. Vaughan, Jim & Doumen, Sjoerd C. & Kok, Koen, 2023. "Empowering tomorrow, controlling today: A multi-criteria assessment of distribution grid tariff designs," Applied Energy, Elsevier, vol. 341(C).
    3. Morell-Dameto, Nicolás & Chaves-Ávila, José Pablo & Gómez San Román, Tomás & Schittekatte, Tim, 2023. "Forward-looking dynamic network charges for real-world electricity systems: A Slovenian case study," Energy Economics, Elsevier, vol. 125(C).
    4. Avau, Michiel & Govaerts, Niels & Delarue, Erik, 2021. "Impact of distribution tariffs on prosumer demand response," Energy Policy, Elsevier, vol. 151(C).
    5. Dina A. Zaki & Mohamed Hamdy, 2022. "A Review of Electricity Tariffs and Enabling Solutions for Optimal Energy Management," Energies, MDPI, vol. 15(22), pages 1-17, November.
    6. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    7. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).
    8. Valentin Bertsch & Wolf Fichtner, 2016. "A participatory multi-criteria approach for power generation and transmission planning," Annals of Operations Research, Springer, vol. 245(1), pages 177-207, October.
    9. Read, Laura & Madani, Kaveh & Mokhtari, Soroush & Hanks, Catherine, 2017. "Stakeholder-driven multi-attribute analysis for energy project selection under uncertainty," Energy, Elsevier, vol. 119(C), pages 744-753.
    10. Büyüközkan, Gülçin & Güleryüz, Sezin, 2016. "An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey," International Journal of Production Economics, Elsevier, vol. 182(C), pages 435-448.
    11. Vasileiou, Margarita & Loukogeorgaki, Eva & Vagiona, Dimitra G., 2017. "GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 745-757.
    12. Bovera, Filippo & Delfanti, Maurizio & Fumagalli, Elena & Lo Schiavo, Luca & Vailati, Riccardo, 2021. "Regulating electricity distribution networks under technological and demand uncertainty," Energy Policy, Elsevier, vol. 149(C).
    13. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," Energy Policy, Elsevier, vol. 152(C).
    14. Calabrese, Armando & Costa, Roberta & Levialdi, Nathan & Menichini, Tamara, 2019. "Integrating sustainability into strategic decision-making: A fuzzy AHP method for the selection of relevant sustainability issues," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 155-168.
    15. Sagir, Emrah & Alipour, Siamak, 2021. "Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Mohammad AlHashmi & Gyan Chhipi-Shrestha & Rajeev Ruparathna & Kh Md Nahiduzzaman & Kasun Hewage & Rehan Sadiq, 2021. "Energy Performance Assessment Framework for Residential Buildings in Saudi Arabia," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
    17. Diaz-Balteiro, L & González-Pachón, J. & Romero, C., 2017. "Measuring systems sustainability with multi-criteria methods: A critical review," European Journal of Operational Research, Elsevier, vol. 258(2), pages 607-616.
    18. Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Nei Yoshihiro Soma & Carlos Eduardo Sanches da Silva, 2021. "MCDM-Based R&D Project Selection: A Systematic Literature Review," Sustainability, MDPI, vol. 13(21), pages 1-34, October.
    19. Kurka, Thomas & Blackwood, David, 2013. "Selection of MCA methods to support decision making for renewable energy developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 225-233.
    20. Akbari, Negar & Irawan, Chandra A. & Jones, Dylan F. & Menachof, David, 2017. "A multi-criteria port suitability assessment for developments in the offshore wind industry," Renewable Energy, Elsevier, vol. 102(PA), pages 118-133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:188:y:2024:i:c:s0301421524000703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.