IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v177y2023ics0301421523001556.html
   My bibliography  Save this article

Rationalizing donations and subsidies: Energy ecosystem development for sustainable renewable energy transition in Nepal

Author

Listed:
  • Bhattarai, Utsav
  • Maraseni, Tek
  • Apan, Armando
  • Devkota, Laxmi Prasad

Abstract

Donor-driven research and implementations in renewable energy (RE) might not necessarily resonate with the physical, social, economic and political settings of the developing world. We take a developing South Asian country – Nepal – to examine why solar and wind technologies have failed despite tremendous donor-support and subsidies during the last three decades. We combine extensive literature review, expert interviews and own readings from our two decades-long professional career in the RE sector of Nepal to arrive at rational conclusions. Almost all past internationally funded and government-subsidized off-grid solar and wind energy projects failed upon discontinuation of funds. Furthermore, the pristine Himalayan environment was forced to bear the burden of hazardous waste management. Nepal, being one of the best countries for hydropower, should concentrate on this technology. The suitability, convenient availability of other feasible alternatives and social acceptance decides the fate of technologies. Donations/subsidies need to be better utilized by developing a bottom-up “ecosystem” fostering new technologies to be a part of the energy mix sustainably. Through this paper, we provide specific recommendations for the use of donations and subsidies in the RE sector which have been drawn from the Nepal case but are applicable to the Global South in general.

Suggested Citation

  • Bhattarai, Utsav & Maraseni, Tek & Apan, Armando & Devkota, Laxmi Prasad, 2023. "Rationalizing donations and subsidies: Energy ecosystem development for sustainable renewable energy transition in Nepal," Energy Policy, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:enepol:v:177:y:2023:i:c:s0301421523001556
    DOI: 10.1016/j.enpol.2023.113570
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421523001556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2023.113570?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahriyar Mukhtarov & Jeyhun I. Mikayilov & Sugra Humbatova & Vugar Muradov, 2020. "Do High Oil Prices Obstruct the Transition to Renewable Energy Consumption?," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
    2. Varun Sivaram & Shayle Kann, 2016. "Solar power needs a more ambitious cost target," Nature Energy, Nature, vol. 1(4), pages 1-3, April.
    3. Capellán-Pérez, Iñigo & Campos-Celador, Álvaro & Terés-Zubiaga, Jon, 2018. "Renewable Energy Cooperatives as an instrument towards the energy transition in Spain," Energy Policy, Elsevier, vol. 123(C), pages 215-229.
    4. Rodríguez-Segura, Francisco Javier & Osorio-Aravena, Juan Carlos & Frolova, Marina & Terrados-Cepeda, Julio & Muñoz-Cerón, Emilio, 2023. "Social acceptance of renewable energy development in southern Spain: Exploring tendencies, locations, criteria and situations," Energy Policy, Elsevier, vol. 173(C).
    5. Pokharel, Shaligram, 2003. "Promotional issues on alternative energy technologies in Nepal," Energy Policy, Elsevier, vol. 31(4), pages 307-318, March.
    6. Stefan Ćetković & Aron Buzogány, 2019. "The Political Economy of EU Climate and Energy Policies in Central and Eastern Europe Revisited: Shifting Coalitions and Prospects for Clean Energy Transitions," Politics and Governance, Cogitatio Press, vol. 7(1), pages 124-138.
    7. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    8. Liao, Chuan & Erbaugh, James T. & Kelly, Allison C. & Agrawal, Arun, 2021. "Clean energy transitions and human well-being outcomes in Lower and Middle Income Countries: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Agbonaye, Osaru & Keatley, Patrick & Huang, Ye & Odiase, Friday O. & Hewitt, Neil, 2022. "Value of demand flexibility for managing wind energy constraint and curtailment," Renewable Energy, Elsevier, vol. 190(C), pages 487-500.
    10. Selçuklu, Saltuk Buğra & Coit, D.W. & Felder, F.A., 2023. "Electricity generation portfolio planning and policy implications of Turkish power system considering cost, emission, and uncertainty," Energy Policy, Elsevier, vol. 173(C).
    11. Windemer, Rebecca, 2023. "Acceptance should not be assumed. How the dynamics of social acceptance changes over time, impacting onshore wind repowering," Energy Policy, Elsevier, vol. 173(C).
    12. Greg A. Barron-Gafford & Mitchell A. Pavao-Zuckerman & Rebecca L. Minor & Leland F. Sutter & Isaiah Barnett-Moreno & Daniel T. Blackett & Moses Thompson & Kirk Dimond & Andrea K. Gerlak & Gary P. Nabh, 2019. "Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands," Nature Sustainability, Nature, vol. 2(9), pages 848-855, September.
    13. Bhandari, Ramchandra & Stadler, Ingo, 2011. "Electrification using solar photovoltaic systems in Nepal," Applied Energy, Elsevier, vol. 88(2), pages 458-465, February.
    14. Ram P. Dhital & Yutaka Ito & Shinji Kaneko & Satoru Komatsu & Ryota Mihara & Yuichiro Yoshida, 2016. "Does Institutional Failure Undermine the Physical Design Performance of Solar Water Pumping Systems in Rural Nepal?," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    15. Devkota, Laxmi P. & Bhattarai, Utsav & Khatri, Pawan & Marahatta, Suresh & Shrestha, Dibesh, 2022. "Resilience of hydropower plants to flow variation through the concept of flow elasticity of power: Theoretical development," Renewable Energy, Elsevier, vol. 184(C), pages 920-932.
    16. Franziska Müller & Manuel Neumann & Carsten Elsner & Simone Claar, 2021. "Assessing African Energy Transitions: Renewable Energy Policies, Energy Justice, and SDG 7," Politics and Governance, Cogitatio Press, vol. 9(1), pages 119-130.
    17. Best, Rohan, 2017. "Switching towards coal or renewable energy? The effects of financial capital on energy transitions," Energy Economics, Elsevier, vol. 63(C), pages 75-83.
    18. Donné Wagemans & Christian Scholl & Véronique Vasseur, 2019. "Facilitating the Energy Transition—The Governance Role of Local Renewable Energy Cooperatives," Energies, MDPI, vol. 12(21), pages 1-20, November.
    19. Rossi, Joni & Srivastava, Ankur & Hoang, Tran The & Tran, Quoc Tuan & Warneryd, Martin, 2022. "Pathways for the development of future intelligent distribution grids," Energy Policy, Elsevier, vol. 169(C).
    20. Anil Chitrakar & Babu Raj Shrestha, 2010. "The Tuki: Lighting Up Nepal (Innovations Case Narrative: Solar-Powered Tuki)," Innovations: Technology, Governance, Globalization, MIT Press, vol. 5(1), pages 69-78, January.
    21. Navarro-Espinosa, Alejandro & Thomas-Galán, Mauricio, 2023. "Firewood electrification in Chile: effects on household expenditure and energy poverty," Energy Policy, Elsevier, vol. 173(C).
    22. Adjei, E.A. & Amoabeng, K.O. & Ayetor, G.K.K. & Obeng, G.Y. & Quansah, D.A. & Adusei, J.S., 2022. "Assessing the impact of hydro energy project on poverty alleviation: The case of Bui Dam in Ghana," Energy Policy, Elsevier, vol. 170(C).
    23. Pennan Chinnasamy & Luna Bharati & Utsav Bhattarai & Ambika Khadka & Vaskar Dahal & Shahriar Wahid, 2015. "Impact of planned water resource development on current and future water demand in the Koshi River basin, Nepal," Water International, Taylor & Francis Journals, vol. 40(7), pages 1004-1020, November.
    24. Palit, Debajit & Bandyopadhyay, Kaushik Ranjan, 2016. "Rural electricity access in South Asia: Is grid extension the remedy? A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1505-1515.
    25. Lin, Boqiang & Kaewkhunok, Suppawit, 2021. "The role of socio-Culture in the solar power adoption: The inability to reach government policies of marginalized groups," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    26. K.C., Surendra & Khanal, Samir Kumar & Shrestha, Prachand & Lamsal, Buddhi, 2011. "Current status of renewable energy in Nepal: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4107-4117.
    27. Chapman, Andrew J. & McLellan, Benjamin C. & Tezuka, Tetsuo, 2018. "Prioritizing mitigation efforts considering co-benefits, equity and energy justice: Fossil fuel to renewable energy transition pathways," Applied Energy, Elsevier, vol. 219(C), pages 187-198.
    28. Weko, Silvia & Goldthau, Andreas, 2022. "Bridging the low-carbon technology gap? Assessing energy initiatives for the Global South," Energy Policy, Elsevier, vol. 169(C).
    29. Koirala, Dhiroj Prasad & Acharya, Bikram, 2022. "Households’ fuel choices in the context of a decade-long load-shedding problem in Nepal," Energy Policy, Elsevier, vol. 162(C).
    30. Wabukala, Benard M. & Mukisa, Nicholas & Watundu, Susan & Bergland, Olvar & Rudaheranwa, Nichodemus & Adaramola, Muyiwa S., 2023. "Impact of household electricity theft and unaffordability on electricity security: A case of Uganda," Energy Policy, Elsevier, vol. 173(C).
    31. Aryanpur, Vahid & Fattahi, Mahshid & Mamipour, Siab & Ghahremani, Mahsa & Gallachóir, Brian Ó & Bazilian, Morgan D. & Glynn, James, 2022. "How energy subsidy reform can drive the Iranian power sector towards a low-carbon future," Energy Policy, Elsevier, vol. 169(C).
    32. Pietrosemoli, Licia & Rodríguez-Monroy, Carlos, 2019. "The Venezuelan energy crisis: Renewable energies in the transition towards sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 415-426.
    33. Robert L. Fares & Michael E. Webber, 2017. "The impacts of storing solar energy in the home to reduce reliance on the utility," Nature Energy, Nature, vol. 2(2), pages 1-10, February.
    34. Edlyne Eze Anugwom & Kenechukwu Nwakego Anugwom & Oliver Ifeanyi Eya, 2020. "Clean energy transition in a developing society: Perspectives on the socioeconomic determinants of Solar Home Systems adoption among urban households in southeastern Nigeria," African Journal of Science, Technology, Innovation and Development, Taylor & Francis Journals, vol. 12(5), pages 653-661, July.
    35. Sharma, Raj Hari & Awal, Ripendra, 2013. "Hydropower development in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 684-693.
    36. Capellán-Pérez, Iñigo & de Castro, Carlos & Arto, Iñaki, 2017. "Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 760-782.
    37. Wen, Cheng & Lovett, Jon C. & Kwayu, Emmanuel J. & Msigwa, Consalva, 2023. "Off-grid households’ preferences for electricity services: Policy implications for mini-grid deployment in rural Tanzania," Energy Policy, Elsevier, vol. 172(C).
    38. Guidolin, Mariangela & Alpcan, Tansu, 2019. "Transition to sustainable energy generation in Australia: Interplay between coal, gas and renewables," Renewable Energy, Elsevier, vol. 139(C), pages 359-367.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schulz, Christopher & Saklani, Udisha, 2021. "The future of hydropower development in Nepal: Views from the private sector," Renewable Energy, Elsevier, vol. 179(C), pages 1578-1588.
    2. Gurung, Anup & Kumar Ghimeray, Amal & Hassan, Sedky H.A., 2012. "The prospects of renewable energy technologies for rural electrification: A review from Nepal," Energy Policy, Elsevier, vol. 40(C), pages 374-380.
    3. Gurung, Anup & Karki, Rahul & Cho, Ju Sik & Park, Kyung Won & Oh, Sang-Eun, 2013. "Roles of renewable energy technologies in improving the rural energy situation in Nepal: Gaps and opportunities," Energy Policy, Elsevier, vol. 62(C), pages 1104-1109.
    4. Gurung, Anup & Oh, Sang Eun, 2013. "Conversion of traditional biomass into modern bioenergy systems: A review in context to improve the energy situation in Nepal," Renewable Energy, Elsevier, vol. 50(C), pages 206-213.
    5. Satoru Komatsu & Yuki Yamamoto & Yutaka Ito & Shinji Kaneko & Ram Prasad Dhital, 2020. "Water for life: ceaseless routine efforts for collecting drinking water in remote mountainous villages of Nepal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7909-7925, December.
    6. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Mehmet Efe Biresselioglu & Siyami Alp Limoncuoglu & Muhittin Hakan Demir & Johannes Reichl & Katrin Burgstaller & Alessandro Sciullo & Edoardo Ferrero, 2021. "Legal Provisions and Market Conditions for Energy Communities in Austria, Germany, Greece, Italy, Spain, and Turkey: A Comparative Assessment," Sustainability, MDPI, vol. 13(20), pages 1-25, October.
    9. Gyanwali, Khem & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Representing hydropower in the dynamic power sector model and assessing clean energy deployment in the power generation mix of Nepal," Energy, Elsevier, vol. 202(C).
    10. Liqun Peng & Denise L. Mauzerall & Yaofeng D. Zhong & Gang He, 2023. "Heterogeneous effects of battery storage deployment strategies on decarbonization of provincial power systems in China," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Gurung, Anup & Gurung, Om Prakash & Oh, Sang Eun, 2011. "The potential of a renewable energy technology for rural electrification in Nepal: A case study from Tangting," Renewable Energy, Elsevier, vol. 36(11), pages 3203-3210.
    12. Dipendra Bhattarai, 2017. "Is Nepal’s Renewable Energy Subsidy Reaching Poor People of Rural Areas? A Study of Biogas and Solar Home Systems," Working Papers id:11928, eSocialSciences.
    13. Yang, Ying & Campana, Pietro Elia & Yan, Jinyue, 2020. "Potential of unsubsidized distributed solar PV to replace coal-fired power plants, and profits classification in Chinese cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Sovacool, Benjamin K. & Dhakal, Saroj & Gippner, Olivia & Bambawale, Malavika Jain, 2011. "Halting hydro: A review of the socio-technical barriers to hydroelectric power plants in Nepal," Energy, Elsevier, vol. 36(5), pages 3468-3476.
    15. Chong, Shijia & Wu, Jing & Chang, I-Shin, 2024. "Cost accounting and economic competitiveness evaluation of photovoltaic power generation in China —— based on the system levelized cost of electricity," Renewable Energy, Elsevier, vol. 222(C).
    16. Best, Rohan & Li, Han & Trück, Stefan & Truong, Chi, 2021. "Actual uptake of home batteries: The key roles of capital and policy," Energy Policy, Elsevier, vol. 151(C).
    17. Dasí-Crespo, Daniel & Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos, 2023. "Evaluation of the Spanish regulation on self-consumption photovoltaic installations. A case study based on a rural municipality in Spain," Renewable Energy, Elsevier, vol. 204(C), pages 788-802.
    18. Maheshwar Giri & Binoy Goswami, 2017. "Determinants of households’ choice of energy for lighting in Nepal," Economics and Business Letters, Oviedo University Press, vol. 6(2), pages 42-47.
    19. Fernández-Solas, Álvaro & Fernández-Ocaña, Ana M. & Almonacid, Florencia & Fernández, Eduardo F., 2023. "Potential of agrivoltaics systems into olive groves in the Mediterranean region," Applied Energy, Elsevier, vol. 352(C).
    20. Aramendia, Emmanuel & Brockway, Paul E. & Pizzol, Massimo & Heun, Matthew K., 2021. "Moving from final to useful stage in energy-economy analysis: A critical assessment," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:177:y:2023:i:c:s0301421523001556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.