IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v126y2019icp66-75.html
   My bibliography  Save this article

The lifetime determination of ARC reactor as a load-following plant in the energy framework

Author

Listed:
  • Segantin, Stefano
  • Testoni, Raffaella
  • Zucchetti, Massimo

Abstract

Energy studies are interdisciplinary studies. They involve not just technical aspects, but also environmental, social and political aspects. In this framework, an advanced technological innovation as a part of simple solution for the energy problem is considered. The role of the fusion energy as new energy source and in particular the project Affordable Robust Compact (ARC) fusion reactor as new technology is presented as part of energy policy. The most innovative characteristics of ARC is its integration in the energy grid as load-following power plant. In particular, the proposed study investigates the stresses induced in the vacuum vessel, the closest component to the plasma. The performed analysis has been focused on the quantification of time in which the vessel would fail due to repeated thermal stress when it works as load-following. It has been demonstrated that the vacuum vessel lifetime can be quantified from three to five years on the basis of the thermal cycles considered (i.e. 3, 10 and 20 cycles per day).

Suggested Citation

  • Segantin, Stefano & Testoni, Raffaella & Zucchetti, Massimo, 2019. "The lifetime determination of ARC reactor as a load-following plant in the energy framework," Energy Policy, Elsevier, vol. 126(C), pages 66-75.
  • Handle: RePEc:eee:enepol:v:126:y:2019:i:c:p:66-75
    DOI: 10.1016/j.enpol.2018.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151830733X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ugo Bardi, 2010. "Extracting Minerals from Seawater: An Energy Analysis," Sustainability, MDPI, vol. 2(4), pages 1-13, April.
    2. Vaillancourt, Kathleen & Labriet, Maryse & Loulou, Richard & Waaub, Jean-Philippe, 2008. "The role of nuclear energy in long-term climate scenarios: An analysis with the World-TIMES model," Energy Policy, Elsevier, vol. 36(7), pages 2296-2307, July.
    3. Junseop Shim & Chisung Park & Mark Wilding, 2015. "Identifying policy frames through semantic network analysis: an examination of nuclear energy policy across six countries," Policy Sciences, Springer;Society of Policy Sciences, vol. 48(1), pages 51-83, March.
    4. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    5. Kunsch, Pierre L. & Friesewinkel, Jean, 2014. "Nuclear energy policy in Belgium after Fukushima," Energy Policy, Elsevier, vol. 66(C), pages 462-474.
    6. Pierre Louis Kunsch & Jean Friesewinkel, 2014. "Nuclear energy policy in Belgium after Fukushima," ULB Institutional Repository 2013/189447, ULB -- Universite Libre de Bruxelles.
    7. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    8. Carpinelli, Guido & Caramia, Pierluigi & Varilone, Pietro, 2015. "Multi-linear Monte Carlo simulation method for probabilistic load flow of distribution systems with wind and photovoltaic generation systems," Renewable Energy, Elsevier, vol. 76(C), pages 283-295.
    9. Nowotny, Janusz & Dodson, John & Fiechter, Sebastian & Gür, Turgut M. & Kennedy, Brendan & Macyk, Wojciech & Bak, Tadeusz & Sigmund, Wolfgang & Yamawaki, Michio & Rahman, Kazi A., 2018. "Towards global sustainability: Education on environmentally clean energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2541-2551.
    10. Apergis, Nicholas & Payne, James E. & Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth," Ecological Economics, Elsevier, vol. 69(11), pages 2255-2260, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniele Lerede & Chiara Bustreo & Francesco Gracceva & Yolanda Lechón & Laura Savoldi, 2020. "Analysis of the Effects of Electrification of the Road Transport Sector on the Possible Penetration of Nuclear Fusion in the Long-Term European Energy Mix," Energies, MDPI, vol. 13(14), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariola Piłatowska & Andrzej Geise, 2021. "Impact of Clean Energy on CO 2 Emissions and Economic Growth within the Phases of Renewables Diffusion in Selected European Countries," Energies, MDPI, vol. 14(4), pages 1-24, February.
    2. Soytas, Ugur & Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2022. "Economic and environmental implications of the nuclear power phase-out in Belgium: Insights from time-series models and a partial differential equations algorithm," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 241-256.
    3. Jin, Taeyoung & Kim, Jinsoo, 2018. "What is better for mitigating carbon emissions – Renewable energy or nuclear energy? A panel data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 464-471.
    4. Lee, Chien-Chiang & Chiu, Yi-Bin, 2011. "Oil prices, nuclear energy consumption, and economic growth: New evidence using a heterogeneous panel analysis," Energy Policy, Elsevier, vol. 39(4), pages 2111-2120, April.
    5. Man-Keun Kim & Kangil Lee, 2015. "Dynamic Interactions between Carbon and Energy Prices in the U.S. Regional Greenhouse Gas Initiative," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 494-501.
    6. Omri, Anis & Ben Mabrouk, Nejah & Sassi-Tmar, Amel, 2015. "Modeling the causal linkages between nuclear energy, renewable energy and economic growth in developed and developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1012-1022.
    7. Hanan Naser, 2015. "Can Nuclear Energy Stimulates Economic Growth? Evidence from Highly Industrialised Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 164-173.
    8. Marius Chofor Asaba & Fabian Duffner & Florian Frieden & Jens Leker & Stephan von Delft, 2022. "Location choice for large‐scale battery manufacturing plants: Exploring the role of clean energy, costs, and knowledge on location decisions in Europe," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1514-1527, August.
    9. George Halkos & Argyro Zisiadou, 2023. "Energy Crisis Risk Mitigation through Nuclear Power and RES as Alternative Solutions towards Self-Sufficiency," JRFM, MDPI, vol. 16(1), pages 1-29, January.
    10. Karakosta, Charikleia & Pappas, Charalampos & Marinakis, Vangelis & Psarras, John, 2013. "Renewable energy and nuclear power towards sustainable development: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 187-197.
    11. Anis Omri & Anissa Chaibi, 2014. "Nuclear energy, renewable energy, and economic growth in developed and developing countries : A modelling analysis from simultaneous-equation models," Working Papers 2014-188, Department of Research, Ipag Business School.
    12. Omri, Anis, 2014. "An international literature survey on energy-economic growth nexus: Evidence from country-specific studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 951-959.
    13. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A D2C algorithm on the natural gas consumption and economic growth: Challenges faced by Germany and Japan," Energy, Elsevier, vol. 219(C).
    14. Emanuel Kohlscheen & Richhild Moessner & Előd Takáts, 2021. "Growth, coal and carbon emissions: economic overheating and climate change," BIS Working Papers 937, Bank for International Settlements.
    15. Shahbaz, Muhammad & Nasreen, Samia & Ahmed, Khalid & Hammoudeh, Shawkat, 2017. "Trade openness–carbon emissions nexus: The importance of turning points of trade openness for country panels," Energy Economics, Elsevier, vol. 61(C), pages 221-232.
    16. Vikniswari Vija Kumaran & Siti Nurul Munawwarah & Mohd Khairi Ismail, 2021. "Sustainability in ASEAN: The Roles of Financial Development towards Climate Change," Asian Journal of Economics and Empirical Research, Asian Online Journal Publishing Group, vol. 8(1), pages 1-9.
    17. Özlem Karadağ Albayrak & Samet Topal & Serhat Çamkaya, 2022. "The Impact of Economic Growth, Renewable Energy, Non-renewable Energy and Trade Openness on the Ecological Footprint and Forecasting in Turkiye: an Case of the ARDL and NMGM Forecasting Model," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 10(2), pages 139-154, December.
    18. Dakpogan, Arnaud & Smit, Eon, 2018. "The effect of electricity losses on GDP in Benin," MPRA Paper 89545, University Library of Munich, Germany.
    19. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    20. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:126:y:2019:i:c:p:66-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.