IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v122y2018icp349-357.html
   My bibliography  Save this article

Wheat straw availability for bioenergy in England

Author

Listed:
  • Townsend, T.J.
  • Sparkes, D.L.
  • Ramsden, S.J.
  • Glithero, N.J.
  • Wilson, P.

Abstract

In an effort to meet energy demands while reducing carbon emissions, crop residues, such as wheat straw, have been investigated for their use as feedstock for biofuel production. In order to identify the feasibility of utilising crop residues as bioenergy feedstock, a postal survey was conducted to determine current farm business wheat straw use, destination and potential future supply. The survey responses showed a bias towards larger, more commercially-minded farms, therefore capturing a large area of straw production. Results demonstrated a wide range of responses to both current straw use and potential for the supply of straw to different markets in the future. Interestingly, even for a very generous payment for straw, 28.5% of straw currently chopped and incorporated would not be sold, suggesting that straw supply for bioenergy feedstock is likely to be more limited than previously assumed. However, higher prices for straw would encourage farmers to explore ways of increasing straw yield.

Suggested Citation

  • Townsend, T.J. & Sparkes, D.L. & Ramsden, S.J. & Glithero, N.J. & Wilson, P., 2018. "Wheat straw availability for bioenergy in England," Energy Policy, Elsevier, vol. 122(C), pages 349-357.
  • Handle: RePEc:eee:enepol:v:122:y:2018:i:c:p:349-357
    DOI: 10.1016/j.enpol.2018.07.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518304993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.07.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meijer, Ineke S.M. & Hekkert, Marko P. & Koppenjan, Joop F.M., 2007. "The influence of perceived uncertainty on entrepreneurial action in emerging renewable energy technology; biomass gasification projects in the Netherlands," Energy Policy, Elsevier, vol. 35(11), pages 5836-5854, November.
    2. Lobley, Matt & Butler, Allan, 2010. "The impact of CAP reform on farmers' plans for the future: Some evidence from South West England," Food Policy, Elsevier, vol. 35(4), pages 341-348, August.
    3. Giannoccaro, Giacomo & de Gennaro, Bernardo C. & De Meo, Emilio & Prosperi, Maurizio, 2017. "Assessing farmers' willingness to supply biomass as energy feedstock: Cereal straw in Apulia (Italy)," Energy Economics, Elsevier, vol. 61(C), pages 179-185.
    4. Gallagher, Paul W. & Dikeman, Mark & Fritz, John & Wailes, Eric J. & Gauthier, Wayne M. & Shapouri, Hosein, 2003. "Biomass From Crop Residues: Cost And Supply Estimates," Agricultural Economic Reports 34063, United States Department of Agriculture, Economic Research Service.
    5. Littlewood, Jade & Murphy, Richard J. & Wang, Lei, 2013. "Importance of policy support and feedstock prices on economic feasibility of bioethanol production from wheat straw in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 291-300.
    6. Ira Altman & Jason Bergtold & Dwight R. Sanders & Thomas G. Johnson, 2013. "Market Development of Biomass Industries," Agribusiness, John Wiley & Sons, Ltd., vol. 29(4), pages 486-496, September.
    7. Altman, Ira & Bergtold, Jason & Sanders, Dwight & Johnson, Tom, 2015. "Willingness to supply biomass for bioenergy production: A random parameter truncated analysis," Energy Economics, Elsevier, vol. 47(C), pages 1-10.
    8. Gallagher, Paul W. & Dikeman, Mike & Fritz, J. & Wailes, Eric J. & Gauthier, W. & Shapouri, H., 2003. "Biomass from Crop Residues: Some Cost and Supply Estimates," Staff General Research Papers Archive 10240, Iowa State University, Department of Economics.
    9. Glithero, N.J. & Ramsden, S.J. & Wilson, P., 2013. "Barriers and incentives to the production of bioethanol from cereal straw: A farm business perspective," Energy Policy, Elsevier, vol. 59(C), pages 161-171.
    10. Wilson, P. & Glithero, N.J. & Ramsden, S.J., 2014. "Prospects for dedicated energy crop production and attitudes towards agricultural straw use: The case of livestock farmers," Energy Policy, Elsevier, vol. 74(C), pages 101-110.
    11. Gallagher, Paul W. & Dikeman, Mark & Fritz, J. & Wailes, Eric J. & Shapouri, H., 2003. "Biomass from Crop Residues: Some Social Cost and Supply Estimates for U.S. Crops," Staff General Research Papers Archive 5124, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    2. Fang, Yan Ru & Wu, Yi & Xie, Guang Hui, 2019. "Crop residue utilizations and potential for bioethanol production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Hao Zhu & Yibin Ao & Hong Xu & Zhongli Zhou & Yan Wang & Linchuan Yang, 2021. "Determinants of Farmers’ Intention of Straw Recycling: A Comparison Analysis Based on Different Pro-Environmental Publicity Modes," IJERPH, MDPI, vol. 18(21), pages 1-17, October.
    4. Gérard, Maxence & Jayet, Pierre-Alain, 2023. "European farmers’ response to crop residue prices and implications for bioenergy policies," Energy Policy, Elsevier, vol. 177(C).
    5. Maxence Gérard & Pierre-Alain Jayet, 2023. "European farmers’ response to crop residue prices and implications for bioenergy policies [Réponse des agriculteurs européens aux prix des résidus de cultures et implications pour les politiques bi," Post-Print hal-04071932, HAL.
    6. Lukáš Hlisnikovský & Milan Vach & Zdeněk Abrham & Ladislav Menšík & Eva Kunzová, 2020. "The effect of mineral fertilisers and farmyard manure on grain and straw yield, quality and economical parameters of winter wheat," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 66(6), pages 249-256.
    7. Mohd Idris, Muhammad Nurariffudin & Leduc, Sylvain & Yowargana, Ping & Hashim, Haslenda & Kraxner, Florian, 2021. "Spatio-temporal assessment of the impact of intensive palm oil-based bioenergy deployment on cross-sectoral energy decarbonization," Applied Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuo, Alec & Hou, Lingling & Huang, Zeying, 2020. "How does farmers' current usage of crop straws influence the willingness-to-accept price to sell?," Energy Economics, Elsevier, vol. 86(C).
    2. Zhang, Bingquan & Xu, Jialu & Lin, Zhixian & Lin, Tao & Faaij, André P.C., 2021. "Spatially explicit analyses of sustainable agricultural residue potential for bioenergy in China under various soil and land management scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Gallagher, Paul W. & Baumes, Harry, 2012. "Biomass Supply From Corn Residues: Estimates and Critical Review of Procedures," Agricultural Economic Reports 308488, United States Department of Agriculture, Economic Research Service.
    4. Holmatov, B. & Schyns, J.F. & Krol, M.S. & Gerbens-Leenes, P.W. & Hoekstra, A.Y., 2021. "Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Gérard, Maxence & Jayet, Pierre-Alain, 2023. "European farmers’ response to crop residue prices and implications for bioenergy policies," Energy Policy, Elsevier, vol. 177(C).
    6. Liu, Tingting & McConkey, Brian & Huffman, Ted & Smith, Stephen & MacGregor, Bob & Yemshanov, Denys & Kulshreshtha, Suren, 2014. "Potential and impacts of renewable energy production from agricultural biomass in Canada," Applied Energy, Elsevier, vol. 130(C), pages 222-229.
    7. van Eijck, Janske & Batidzirai, Bothwell & Faaij, André, 2014. "Current and future economic performance of first and second generation biofuels in developing countries," Applied Energy, Elsevier, vol. 135(C), pages 115-141.
    8. Morrison, Geoffrey M. & Kumar, Ravindra & Chugh, Sachin & Puri, S. K. & Tuli, D. K. & Malhotra, R. K., 2011. "Hydrogen Transportation in Dehli? Investigating the Hydrogen Compressed Natural Gas (H-CNG) Option," Institute of Transportation Studies, Working Paper Series qt5hg3r4pn, Institute of Transportation Studies, UC Davis.
    9. Walsh, Marie E., 2005. "Non-Traditional Sources of Biomass Feedstocks," Energy from Agriculture: New Technologies, Innovative Programs and Success Stories, December 14-15, 2005, St. Louis, Missouri 7625, Farm Foundation.
    10. Maxence Gérard & Pierre-Alain Jayet, 2023. "European farmers’ response to crop residue prices and implications for bioenergy policies [Réponse des agriculteurs européens aux prix des résidus de cultures et implications pour les politiques bi," Post-Print hal-04071932, HAL.
    11. Gallagher, Paul W., 2014. "The regional effects of a biomass fuel industry on US agriculture," Energy Policy, Elsevier, vol. 69(C), pages 598-609.
    12. Hammond, Geoffrey P. & Mansell, Ross V.M., 2018. "A comparative thermodynamic evaluation of bioethanol processing from wheat straw," Applied Energy, Elsevier, vol. 224(C), pages 136-146.
    13. Moon, Jin-Young & Apland, Jeffrey & Folle, Solomon & Mulla, David, 2016. "A Watershed Level Economic Analysis of Cellulosic Biofuel Feedstock Production with Consideration of Water Quality," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 5(3).
    14. Bergtold, Jason S. & Shanoyan, Aleksan & Fewell, Jason E. & Williams, Jeffery R., 2017. "Annual bioenergy crops for biofuels production: Farmers' contractual preferences for producing sweet sorghum," Energy, Elsevier, vol. 119(C), pages 724-731.
    15. Daniel R. Petrolia, 2008. "An Analysis of the Relationship between Demand for Corn Stover as an Ethanol Feedstock and Soil Erosion," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 30(4), pages 677-691.
    16. Gallagher, Paul W. & Shapouri, Hosein, 2008. "Biomass Crop and Ethanol Supply from Agricultural Lands in the United States with Methodology, Estimation Results, and State-by-State Simulations," Agricultural Economic Reports 308485, United States Department of Agriculture, Economic Research Service.
    17. Lawrence D. Mapemba & Francis M. Epplin & Charles M. Taliaferro & Raymond L. Huhnke, 2007. "Biorefinery Feedstock Production on Conservation Reserve Program Land," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 29(2), pages 227-246.
    18. Altman, Ira & Bergtold, Jason & Sanders, Dwight & Johnson, Tom, 2015. "Willingness to supply biomass for bioenergy production: A random parameter truncated analysis," Energy Economics, Elsevier, vol. 47(C), pages 1-10.
    19. Schillo, R. Sandra & Isabelle, Diane A. & Shakiba, Abtin, 2017. "Linking advanced biofuels policies with stakeholder interests: A method building on Quality Function Deployment," Energy Policy, Elsevier, vol. 100(C), pages 126-137.
    20. Bergtold, Jason & Shanoyan, Aleksan & Altman, Ira J. & Fewell, Jason & Jeffery, Williams, 2014. "Estimating the Supply of Corn Stover at the Farm Level for Biofuel Production: Taking Account of Farmers’ Willingness to Harvest," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170573, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:122:y:2018:i:c:p:349-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.