IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v33y2011i1p33-43.html
   My bibliography  Save this article

Electricity tariff design for transition economies: Application to the Libyan power system

Author

Listed:
  • Reneses, Javier
  • Gómez, Tomás
  • Rivier, Juan
  • Angarita, Jorge L.

Abstract

This paper presents a general electricity tariff design methodology, especially applicable for transition economies. These countries are trying to modernize their power systems from a centralized environment (with normally, a public vertically integrated electric company) to a liberalized framework (unbundling electricity companies and, eventually, starting a privatization process). Two issues arise as crucial to achieving a successful transition: i) ensuring cost recovery for all future unbundled activities (generation, transmission, distribution and retailing), and ii) sending the right price signals to electricity customers, avoiding cross-subsidies between customer categories. The design of electricity tariffs plays a pivotal role in achieving both objectives. This paper proposes a new tariff design methodology that, complying with these two aforementioned criteria, requires a low amount of information regarding system data and customer load profiles. This is important since, typically, volume and quality of data are poor in those countries. The presented methodology is applied to computing tariffs for the Libyan power system in 2006, using real data.

Suggested Citation

  • Reneses, Javier & Gómez, Tomás & Rivier, Juan & Angarita, Jorge L., 2011. "Electricity tariff design for transition economies: Application to the Libyan power system," Energy Economics, Elsevier, vol. 33(1), pages 33-43, January.
  • Handle: RePEc:eee:eneeco:v:33:y:2011:i:1:p:33-43
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(10)00061-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jamasb, T. & Pollitt, M., 2000. "Benchmarking and regulation: international electricity experience," Utilities Policy, Elsevier, vol. 9(3), pages 107-130, September.
    2. Pollitt, Michael, 2005. "The role of efficiency estimates in regulatory price reviews: Ofgem's approach to benchmarking electricity networks," Utilities Policy, Elsevier, vol. 13(4), pages 279-288, December.
    3. Liston, Catherine, 1993. "Price-Cap versus Rate-of-Return Regulation," Journal of Regulatory Economics, Springer, vol. 5(1), pages 25-48, March.
    4. Rodri­guez Ortega, Mari­a Pi­a & Pérez-Arriaga, J. Ignacio & Abbad, Juan Rivier & González, Jesús Peco, 2008. "Distribution network tariffs: A closed question?," Energy Policy, Elsevier, vol. 36(5), pages 1712-1725, May.
    5. Lowry, Mark Newton & Getachew, Lullit, 2009. "Statistical benchmarking in utility regulation: Role, standards and methods," Energy Policy, Elsevier, vol. 37(4), pages 1323-1330, April.
    6. Feldstein, Martin S, 1972. "Distributional Equity and the Optimal Structure of Public Prices," American Economic Review, American Economic Association, vol. 62(1), pages 32-36, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Proskuryakova, Liliana & Starodubtseva, Alena & Bianco, Vincenzo, 2020. "Modelling a household tariff for reducing sectoral cross-subsidies in the Russian power market," Energy, Elsevier, vol. 213(C).
    2. Steele Santos, Paulo E. & Coradi Leme, Rafael & Galvão, Leandro, 2012. "On the electrical two-part tariff—The Brazilian perspective," Energy Policy, Elsevier, vol. 40(C), pages 123-130.
    3. Nicolás Morell Dameto & José Pablo Chaves-Ávila & Tomás Gómez San Román, 2020. "Revisiting Electricity Network Tariffs in a Context of Decarbonization, Digitalization, and Decentralization," Energies, MDPI, vol. 13(12), pages 1-21, June.
    4. Wang, Zhaohua & Zhang, Bin & Zhang, Yixiang, 2012. "Determinants of public acceptance of tiered electricity price reform in China: Evidence from four urban cities," Applied Energy, Elsevier, vol. 91(1), pages 235-244.
    5. Dupont, B. & De Jonghe, C. & Olmos, L. & Belmans, R., 2014. "Demand response with locational dynamic pricing to support the integration of renewables," Energy Policy, Elsevier, vol. 67(C), pages 344-354.
    6. Li, Na & Hakvoort, Rudi A. & Lukszo, Zofia, 2021. "Cost allocation in integrated community energy systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Steele Santos, Paulo E. & Marangon Lima, Jose W. & Leme, Rafael C. & Leite Ferreira, Tiago G., 2012. "Distribution charges for consumers and microgeneration considering load elasticity sensitivity," Energy Economics, Elsevier, vol. 34(2), pages 468-475.
    8. Na Li & Rudi Hakvoort & Zofia Lukszo, 2021. "Cost Allocation in Integrated Community Energy Systems—Social Acceptance," Sustainability, MDPI, vol. 13(17), pages 1-24, September.
    9. Merkel, Erik & Fehrenbach, Daniel & McKenna, Russell & Fichtner, Wolf, 2014. "Modelling decentralised heat supply: An application and methodological extension in TIMES," Energy, Elsevier, vol. 73(C), pages 592-605.
    10. Hendam, Mohamed & Schittekatte, Tim & Abdel-Rahman, Mohamed & Kamh, Mohamed Zakaria, 2022. "Rethinking electricity rate design: Fostering the energy transition in North Africa," Energy Policy, Elsevier, vol. 169(C).
    11. Li, Na & Hakvoort, Rudi A. & Lukszo, Zofia, 2022. "Cost allocation in integrated community energy systems — Performance assessment," Applied Energy, Elsevier, vol. 307(C).
    12. Kapitonov, Ivan A. & Patapas, Aleksandras, 2021. "Principles regulation of electricity tariffs for the integrated generation of traditional and alternative energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steele Santos, Paulo E. & Coradi Leme, Rafael & Galvão, Leandro, 2012. "On the electrical two-part tariff—The Brazilian perspective," Energy Policy, Elsevier, vol. 40(C), pages 123-130.
    2. Mehdi Farsi & Aurelio Fetz & Massimo Filippini, 2007. "Benchmarking and Regulation in the Electricity Distribution Sector," CEPE Working paper series 07-54, CEPE Center for Energy Policy and Economics, ETH Zurich.
    3. Ajayi, Victor & Anaya, Karim & Pollitt, Michael, 2022. "Incentive regulation, productivity growth and environmental effects: the case of electricity networks in Great Britain," Energy Economics, Elsevier, vol. 115(C).
    4. Angel Arcos-Vargas & Fernando Núñez & Juan Antonio Ballesteros, 2017. "Quality, remuneration and regulatory framework: some evidence on the European electricity distribution," Journal of Regulatory Economics, Springer, vol. 51(1), pages 98-118, February.
    5. Hess, Borge & Cullmann, Astrid, 2007. "Efficiency analysis of East and West German electricity distribution companies - Do the "Ossis" really beat the "Wessis"?," Utilities Policy, Elsevier, vol. 15(3), pages 206-214, September.
    6. Rodri­guez Ortega, Mari­a Pi­a & Pérez-Arriaga, J. Ignacio & Abbad, Juan Rivier & González, Jesús Peco, 2008. "Distribution network tariffs: A closed question?," Energy Policy, Elsevier, vol. 36(5), pages 1712-1725, May.
    7. Paul Nillesen & Michael Pollitt, 2007. "The 2001-3 electricity distribution price control review in the Netherlands: regulatory process and consumer welfare," Journal of Regulatory Economics, Springer, vol. 31(3), pages 261-287, June.
    8. Afsharian, Mohsen & Ahn, Heinz & Lopes, Ana & Vilela, Bruno, 2019. "Pitfalls in estimating the X-factor: The case of energy transmission regulation in Brazil," Socio-Economic Planning Sciences, Elsevier, vol. 65(C), pages 1-9.
    9. Jamasb, Tooraj & Pollitt, Michael, 2008. "Reference models and incentive regulation of electricity distribution networks: An evaluation of Sweden's Network Performance Assessment Model (NPAM)," Energy Policy, Elsevier, vol. 36(5), pages 1788-1801, May.
    10. Lowry, Mark Newton & Getachew, Lullit, 2009. "Statistical benchmarking in utility regulation: Role, standards and methods," Energy Policy, Elsevier, vol. 37(4), pages 1323-1330, April.
    11. Carlos Henrique Rocha & Luiz Ricardo Cavalcante & Luiz Guilherme Oliveira, 2011. "Estimating minimum and maximum fares of leased transport services," Applied Financial Economics, Taylor & Francis Journals, vol. 21(16), pages 1159-1162.
    12. Leme, Rafael C. & Paiva, Anderson P. & Steele Santos, Paulo E. & Balestrassi, Pedro P. & Galvão, Leandro de Lima, 2014. "Design of experiments applied to environmental variables analysis in electricity utilities efficiency: The Brazilian case," Energy Economics, Elsevier, vol. 45(C), pages 111-119.
    13. Elvira Silva & Pedro Macedo & Isabel Soares, 2019. "Maximum entropy: a stochastic frontier approach for electricity distribution regulation," Journal of Regulatory Economics, Springer, vol. 55(3), pages 237-257, June.
    14. Agrell, Per J. & Niknazar, Pooria, 2014. "Structural and behavioral robustness in applied best-practice regulation," Socio-Economic Planning Sciences, Elsevier, vol. 48(1), pages 89-103.
    15. Pavala Malar Kannan & Govindan Marthandan & Rathimala Kannan, 2021. "Modelling Efficiency of Electric Utilities Using Three Stage Virtual Frontier Data Envelopment Analysis with Variable Selection by Loads Method," Energies, MDPI, vol. 14(12), pages 1-21, June.
    16. Haney, Aoife Brophy & Pollitt, Michael G., 2013. "International benchmarking of electricity transmission by regulators: A contrast between theory and practice?," Energy Policy, Elsevier, vol. 62(C), pages 267-281.
    17. Kopsakangas-Savolainen, Maria & Svento, Rauli, 2010. "Comparing welfare effects of different regulation schemes: An application to the electricity distribution industry," Energy Policy, Elsevier, vol. 38(11), pages 7370-7377, November.
    18. Nuscheler, Robert & Roeder, Kerstin, 2015. "Financing and funding health care: Optimal policy and political implementability," Journal of Health Economics, Elsevier, vol. 42(C), pages 197-208.
    19. Victoria Kravtsova, 2008. "Foreign presence and efficiency in transition economies," Journal of Productivity Analysis, Springer, vol. 29(2), pages 91-102, April.
    20. Jamasb, T. & Söderberg, M., 2009. "Yardstick and Ex-post Regulation by Norm Model: Empirical Equivalence, Pricing Effect, and Performance in Sweeden," Cambridge Working Papers in Economics 0908, Faculty of Economics, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:33:y:2011:i:1:p:33-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.