IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v32y2010i4p838-847.html
   My bibliography  Save this article

A model for energy pricing with stochastic emission costs

Author

Listed:
  • Elliott, Robert J.
  • Lyle, Matthew R.
  • Miao, Hong

Abstract

We use a supply-demand approach to value energy products exposed to emission cost uncertainty. We find closed form solutions for a number of popularly traded energy derivatives such as: forwards, European call options written on spot prices and European Call options written on forward contracts. Our modeling approach is to first construct noisy supply and demand processes and then equate them to find an equilibrium price. This approach is very general while still allowing for sensitivity analysis within a valuation setting. Our assumption is that, in the presence of emission costs, traditional supply growth will slow down causing output prices of energy products to become more costly over time. However, emission costs do not immediately cause output price appreciation, but instead expose individual projects, particularly those with high emission outputs, to much more extreme risks through the cost side of their profit stream. Our results have implications for hedging and pricing for producers operating in areas facing a stochastic emission cost environment.

Suggested Citation

  • Elliott, Robert J. & Lyle, Matthew R. & Miao, Hong, 2010. "A model for energy pricing with stochastic emission costs," Energy Economics, Elsevier, vol. 32(4), pages 838-847, July.
  • Handle: RePEc:eee:eneeco:v:32:y:2010:i:4:p:838-847
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(09)00203-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krichene, Noureddine, 2002. "World crude oil and natural gas: a demand and supply model," Energy Economics, Elsevier, vol. 24(6), pages 557-576, November.
    2. Seifert, Jan & Uhrig-Homburg, Marliese & Wagner, Michael, 2008. "Dynamic behavior of CO2 spot prices," Journal of Environmental Economics and Management, Elsevier, vol. 56(2), pages 180-194, September.
    3. Benz, Eva & Trück, Stefan, 2009. "Modeling the price dynamics of CO2 emission allowances," Energy Economics, Elsevier, vol. 31(1), pages 4-15, January.
    4. Kara, M. & Syri, S. & Lehtila, A. & Helynen, S. & Kekkonen, V. & Ruska, M. & Forsstrom, J., 2008. "The impacts of EU CO2 emissions trading on electricity markets and electricity consumers in Finland," Energy Economics, Elsevier, vol. 30(2), pages 193-211, March.
    5. Deng, S.J. & Oren, S.S., 2006. "Electricity derivatives and risk management," Energy, Elsevier, vol. 31(6), pages 940-953.
    6. Cartea, Álvaro & Villaplana, Pablo, 2008. "Spot price modeling and the valuation of electricity forward contracts: The role of demand and capacity," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2502-2519, December.
    7. Pirrong, Craig & Jermakyan, Martin, 2008. "The price of power: The valuation of power and weather derivatives," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2520-2529, December.
    8. Ramcharran, Harri, 2002. "Oil production responses to price changes: an empirical application of the competitive model to OPEC and non-OPEC countries," Energy Economics, Elsevier, vol. 24(2), pages 97-106, March.
    9. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    10. Hendrik Bessembinder & Michael L. Lemmon, 2002. "Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets," Journal of Finance, American Finance Association, vol. 57(3), pages 1347-1382, June.
    11. Lijesen, Mark G., 2007. "The real-time price elasticity of electricity," Energy Economics, Elsevier, vol. 29(2), pages 249-258, March.
    12. Bunn, Derek W. & Fezzi, Carlo, 2007. "Interaction of European Carbon Trading and Energy Prices," Climate Change Modelling and Policy Working Papers 9092, Fondazione Eni Enrico Mattei (FEEM).
    13. Derek W. Bunn & Carlo Fezzi, 2007. "Interaction of European Carbon Trading and Energy Prices," Working Papers 2007.63, Fondazione Eni Enrico Mattei.
    14. Paolella, Marc S. & Taschini, Luca, 2008. "An econometric analysis of emission allowance prices," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2022-2032, October.
    15. repec:bla:jfinan:v:59:y:2004:i:4:p:1877-1900 is not listed on IDEAS
    16. Lyle, Matthew R. & Elliott, Robert J., 2009. "A 'simple' hybrid model for power derivatives," Energy Economics, Elsevier, vol. 31(5), pages 757-767, September.
    17. Daskalakis, George & Markellos, Raphael N., 2009. "Are electricity risk premia affected by emission allowance prices? Evidence from the EEX, Nord Pool and Powernext," Energy Policy, Elsevier, vol. 37(7), pages 2594-2604, July.
    18. Veith, Stefan & Werner, Jörg R. & Zimmermann, Jochen, 2009. "Capital market response to emission rights returns: Evidence from the European power sector," Energy Economics, Elsevier, vol. 31(4), pages 605-613, July.
    19. John C.B. Cooper, 2003. "Price elasticity of demand for crude oil: estimates for 23 countries," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 27(1), pages 1-8, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Gronwald & Janina Ketterer & Stefan Trück, 2011. "The Dependence Structure between Carbon Emission Allowances and Financial Markets - A Copula Analysis," CESifo Working Paper Series 3418, CESifo.
    2. Daskalakis, George & Markellos, Raphael N., 2009. "Are electricity risk premia affected by emission allowance prices? Evidence from the EEX, Nord Pool and Powernext," Energy Policy, Elsevier, vol. 37(7), pages 2594-2604, July.
    3. Carlos Pinho & Mara Madaleno, 2011. "Links between spot and futures allowances: ECX and EEX markets comparison," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 35(2/3/4), pages 101-131.
    4. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Moving Average Market Timing in European Energy Markets: Production Versus Emissions," Energies, MDPI, vol. 11(12), pages 1-24, November.
    5. Fang, Sheng & Lu, Xinsheng & Li, Jianfeng & Qu, Ling, 2018. "Multifractal detrended cross-correlation analysis of carbon emission allowance and stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 551-566.
    6. Chi-Keung Woo, Ira Horowitz, Brian Horii, Ren Orans, and Jay Zarnikau, 2012. "Blowing in the Wind: Vanishing Payoffs of a Tolling Agreement for Natural-gas-fired Generation of Electricity in Texas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    7. Jacobs, Kris & Li, Yu & Pirrong, Craig, 2022. "Supply, demand, and risk premiums in electricity markets," Journal of Banking & Finance, Elsevier, vol. 135(C).
    8. Chang-Yi Li & Son-Nan Chen & Shih-Kuei Lin, 2016. "Pricing derivatives with modeling CO emission allowance using a regime-switching jump diffusion model: with regime-switching risk premium," The European Journal of Finance, Taylor & Francis Journals, vol. 22(10), pages 887-908, August.
    9. Wen, Xiaoqian & Bouri, Elie & Roubaud, David, 2017. "Can energy commodity futures add to the value of carbon assets?," Economic Modelling, Elsevier, vol. 62(C), pages 194-206.
    10. Sharon S. Yang & Jr-Wei Huang & Chuang-Chang Chang, 2016. "Detecting and modelling the jump risk of CO 2 emission allowances and their impact on the valuation of option on futures contracts," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 749-762, May.
    11. Tim Laing & Misato Sato & Michael Grubb & Claudia Comberti, 2013. "Assessing the effectiveness of the EU Emissions Trading System," GRI Working Papers 106, Grantham Research Institute on Climate Change and the Environment.
    12. George Daskalakis, Lazaros Symeonidis, Raphael N. Markellos, 2015. "Electricity futures prices in an emissions constrained economy: Evidence from European power markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    13. Andreas Wagner, 2014. "Residual Demand Modeling and Application to Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    14. Bharati, Rakesh & Crain, Susan J. & Kaminski, Vincent, 2012. "Clustering in crude oil prices and the target pricing zone hypothesis," Energy Economics, Elsevier, vol. 34(4), pages 1115-1123.
    15. Rene Carmona & Michael Coulon & Daniel Schwarz, 2012. "Electricity price modeling and asset valuation: a multi-fuel structural approach," Papers 1205.2299, arXiv.org.
    16. Leon Vinokur, 2009. "Disposition in the Carbon Market and Institutional Constraints," Working Papers 652, Queen Mary University of London, School of Economics and Finance.
    17. Ye, Dezhu & Liu, Shasha & Kong, Dongmin, 2013. "Do efforts on energy saving enhance firm values? Evidence from China's stock market," Energy Economics, Elsevier, vol. 40(C), pages 360-369.
    18. Panagiotis G. Papaioannou & George P. Papaioannou & Kostas Siettos & Akylas Stratigakos & Christos Dikaiakos, 2017. "Dynamic Conditional Correlation between Electricity and Stock markets during the Financial Crisis in Greece," Papers 1708.07063, arXiv.org.
    19. Chi-Keung Woo & Ira Horowitz & Jay Zarnikau & Jack Moore & Brendan Schneiderman & Tony Ho & Eric Leung, 2016. "What Moves the Ex Post Variable Profit of Natural-Gas-Fired Generation in California?," The Energy Journal, , vol. 37(3), pages 29-57, July.
    20. Boersen, Arieke & Scholtens, Bert, 2014. "The relationship between European electricity markets and emission allowance futures prices in phase II of the EU (European Union) emission trading scheme," Energy, Elsevier, vol. 74(C), pages 585-594.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:32:y:2010:i:4:p:838-847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.