IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v31y2009i5p727-735.html
   My bibliography  Save this article

Frequency domain methods applied to forecasting electricity markets

Author

Listed:
  • Trapero, Juan R.
  • Pedregal, Diego J.

Abstract

The changes taking place in electricity markets during the last two decades have produced an increased interest in the problem of forecasting, either load demand or prices. Many forecasting methodologies are available in the literature nowadays with mixed conclusions about which method is most convenient. This paper focuses on the modeling of electricity market time series sampled hourly in order to produce short-term (1 to 24Â h ahead) forecasts. The main features of the system are that (i) models are of an Unobserved Component class that allow for signal extraction of trend, diurnal, weekly and irregular components; (ii) its application is automatic, in the sense that there is no need for human intervention via any sort of identification stage; (iii) the models are estimated in the frequency domain; and (iv) the robustness of the method makes possible its direct use on both load demand and price time series. The approach is thoroughly tested on the PJM interconnection market and the results improve on classical ARIMA models.

Suggested Citation

  • Trapero, Juan R. & Pedregal, Diego J., 2009. "Frequency domain methods applied to forecasting electricity markets," Energy Economics, Elsevier, vol. 31(5), pages 727-735, September.
  • Handle: RePEc:eee:eneeco:v:31:y:2009:i:5:p:727-735
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(09)00038-3
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dordonnat, V. & Koopman, S.J. & Ooms, M. & Dessertaine, A. & Collet, J., 2008. "An hourly periodic state space model for modelling French national electricity load," International Journal of Forecasting, Elsevier, vol. 24(4), pages 566-587.
    2. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    3. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    4. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
    5. Bujosa, Marcos & Garcia-Ferrer, Antonio & Young, Peter C., 2007. "Linear dynamic harmonic regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 999-1024, October.
    6. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    7. Taylor, James W. & Buizza, Roberto, 2003. "Using weather ensemble predictions in electricity demand forecasting," International Journal of Forecasting, Elsevier, vol. 19(1), pages 57-70.
    8. Taylor, James W. & de Menezes, Lilian M. & McSharry, Patrick E., 2006. "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, Elsevier, vol. 22(1), pages 1-16.
    9. Víctor Gómez & Agustín Maravall, 1998. "Automatic Modeling Methods for Univariate Series," Working Papers 9808, Banco de España;Working Papers Homepage.
    10. Fan, Ying & Liang, Qiang & Wei, Yi-Ming, 2008. "A generalized pattern matching approach for multi-step prediction of crude oil price," Energy Economics, Elsevier, vol. 30(3), pages 889-904, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trapero, Juan R. & Pedregal, Diego J., 2016. "A novel time-varying bullwhip effect metric: An application to promotional sales," International Journal of Production Economics, Elsevier, vol. 182(C), pages 465-471.
    2. Gianfreda, Angelica & Grossi, Luigi, 2012. "Forecasting Italian electricity zonal prices with exogenous variables," Energy Economics, Elsevier, vol. 34(6), pages 2228-2239.
    3. Lisi, Francesco & Nan, Fany, 2014. "Component estimation for electricity prices: Procedures and comparisons," Energy Economics, Elsevier, vol. 44(C), pages 143-159.
    4. García-Martos, Carolina & Rodríguez, Julio & Sánchez, María Jesús, 2011. "Forecasting electricity prices and their volatilities using Unobserved Components," Energy Economics, Elsevier, vol. 33(6), pages 1227-1239.
    5. repec:eee:rensus:v:75:y:2017:i:c:p:123-136 is not listed on IDEAS
    6. Trapero, Juan R. & Kourentzes, Nikolaos & Martin, A., 2015. "Short-term solar irradiation forecasting based on Dynamic Harmonic Regression," Energy, Elsevier, vol. 84(C), pages 289-295.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:31:y:2009:i:5:p:727-735. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.