IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v326y2025i2p374-388.html

A prescriptive tree-based model for energy-efficient room scheduling: Considering uncertainty in energy generation and consumption

Author

Listed:
  • Chen, Siping
  • Chiong, Raymond
  • Li, Debiao

Abstract

This paper investigates the energy-efficient room scheduling (ERS) problem by considering uncertainties in energy consumption and renewable energy generation in buildings. Rather than the conventional ‘predict, then optimise’ approach, we propose an improved prescriptive tree-based (IPTB) model that directly ‘prescribes’ scheduling solutions. Our model utilises contextual information on energy consumption (e.g., temperature and humidity) and renewable energies (e.g., wind speeds and sunlight) to generate direct ERS solutions. It is trained using a novel optimisation loss function that aligns historical ERS solutions with current conditions, ensuring robustness and tractability by exploiting problem-specific properties. To evaluate the proposed model’s performance, experiments on randomly generated ERS instances demonstrate that the IPTB model is trained efficiently across various problem sizes and consistently outperforms advanced data-driven optimisation methods in prescriptive accuracy. Moreover, the IPTB model achieves more balanced energy consumption, particularly under practical scenarios emphasising on energy demand charges. A case study using real-world datasets from six buildings at Monash University, Australia, validates the model’s effectiveness in addressing complex practical constraints inherent in ERS problems.

Suggested Citation

  • Chen, Siping & Chiong, Raymond & Li, Debiao, 2025. "A prescriptive tree-based model for energy-efficient room scheduling: Considering uncertainty in energy generation and consumption," European Journal of Operational Research, Elsevier, vol. 326(2), pages 374-388.
  • Handle: RePEc:eee:ejores:v:326:y:2025:i:2:p:374-388
    DOI: 10.1016/j.ejor.2025.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172500147X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2025.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Mengling & Jiao, Zihao & Ran, Lun & Zhang, Yuli, 2023. "Optimal energy and reserve scheduling in a renewable-dominant power system," Omega, Elsevier, vol. 118(C).
    2. Akbarzadeh, Babak & Maenhout, Broos, 2021. "A decomposition-based heuristic procedure for the Medical Student Scheduling problem," European Journal of Operational Research, Elsevier, vol. 288(1), pages 63-79.
    3. Tian, Xuecheng & Yan, Ran & Liu, Yannick & Wang, Shuaian, 2023. "A smart predict-then-optimize method for targeted and cost-effective maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 32-52.
    4. Shao, Kaining & Fan, Wenjuan & Lan, Shaowen & Kong, Min & Yang, Shanlin, 2023. "A column generation-based heuristic for brachytherapy patient scheduling with multiple treatment sessions considering radioactive source decay and time constraints," Omega, Elsevier, vol. 118(C).
    5. Yan, Ran & Wang, Shuaian & Fagerholt, Kjetil, 2020. "A semi-“smart predict then optimize” (semi-SPO) method for efficient ship inspection," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 100-125.
    6. Fadzli Haniff, Mohamad & Selamat, Hazlina & Yusof, Rubiyah & Buyamin, Salinda & Sham Ismail, Fatimah, 2013. "Review of HVAC scheduling techniques for buildings towards energy-efficient and cost-effective operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 94-103.
    7. Esmaeilbeigi, Rasul & Mak-Hau, Vicky & Yearwood, John & Nguyen, Vivian, 2022. "The multiphase course timetabling problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1098-1119.
    8. Nathan Kallus & Xiaojie Mao, 2023. "Stochastic Optimization Forests," Management Science, INFORMS, vol. 69(4), pages 1975-1994, April.
    9. Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
    10. Bagger, Niels-Christian F. & Sørensen, Matias & Stidsen, Thomas R., 2019. "Dantzig–Wolfe decomposition of the daily course pattern formulation for curriculum-based course timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 430-446.
    11. Vanhoucke, Mario & Coelho, Jose & Debels, Dieter & Maenhout, Broos & Tavares, Luis V., 2008. "An evaluation of the adequacy of project network generators with systematically sampled networks," European Journal of Operational Research, Elsevier, vol. 187(2), pages 511-524, June.
    12. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    13. Steffen Limmer & Nils Einecke, 2022. "An Efficient Approach for Peak-Load-Aware Scheduling of Energy-Intensive Tasks in the Context of a Public IEEE Challenge," Energies, MDPI, vol. 15(10), pages 1-23, May.
    14. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    15. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    16. Khaniyev, Taghi & Kayış, Enis & Güllü, Refik, 2020. "Next-day operating room scheduling with uncertain surgery durations: Exact analysis and heuristics," European Journal of Operational Research, Elsevier, vol. 286(1), pages 49-62.
    17. Kolisch, Rainer & Sprecher, Arno, 1997. "PSPLIB - A project scheduling problem library : OR Software - ORSEP Operations Research Software Exchange Program," European Journal of Operational Research, Elsevier, vol. 96(1), pages 205-216, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Di & Zhang, Jinyu & Liu, Zhiyuan & He, Yiliu & Liu, Pan, 2024. "A novel ranking method based on semi-SPO for battery swapping allocation optimization in a hybrid electric transit system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    2. Şeyda Gür & Mehmet Pınarbaşı & Hacı Mehmet Alakaş & Tamer Eren, 2023. "Operating room scheduling with surgical team: a new approach with constraint programming and goal programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(4), pages 1061-1085, December.
    3. Tom Rihm & Norbert Trautmann & Adrian Zimmermann, 2018. "MIP formulations for an application of project scheduling in human resource management," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 609-639, December.
    4. Shuaian Wang & Xuecheng Tian, 2023. "A Deficiency of the Predict-Then-Optimize Framework: Decreased Decision Quality with Increased Data Size," Mathematics, MDPI, vol. 11(15), pages 1-9, July.
    5. Yang-Kuei Lin & Chin Soon Chong, 2025. "Solving Three-Stage Operating Room Scheduling Problems with Uncertain Surgery Durations," Mathematics, MDPI, vol. 13(12), pages 1-24, June.
    6. Van Eynde, Rob & Vanhoucke, Mario, 2022. "New summary measures and datasets for the multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(3), pages 853-868.
    7. Yanbo Ma & Kaiyue Liu & Zheng Li & Xiang Chen, 2022. "Robust Operating Room Scheduling Model with Violation Probability Consideration under Uncertain Surgery Duration," IJERPH, MDPI, vol. 19(20), pages 1-20, October.
    8. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    9. Rahman Torba & Stéphane Dauzère-Pérès & Claude Yugma & Cédric Gallais & Juliette Pouzet, 2024. "Solving a real-life multi-skill resource-constrained multi-project scheduling problem," Annals of Operations Research, Springer, vol. 338(1), pages 69-114, July.
    10. T. Meersman & B. Maenhout, 2022. "Multi-objective optimisation for constructing cyclic appointment schedules for elective and urgent patients," Annals of Operations Research, Springer, vol. 312(2), pages 909-948, May.
    11. Song, Kwonsik & Jang, Youjin & Park, Moonseo & Lee, Hyun-Soo & Ahn, Joseph, 2020. "Energy efficiency of end-user groups for personalized HVAC control in multi-zone buildings," Energy, Elsevier, vol. 206(C).
    12. Tsai, Shing Chih & Yeh, Yingchieh & Kuo, Chen Yun, 2021. "Efficient optimization algorithms for surgical scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 293(2), pages 579-593.
    13. Sadana, Utsav & Chenreddy, Abhilash & Delage, Erick & Forel, Alexandre & Frejinger, Emma & Vidal, Thibaut, 2025. "A survey of contextual optimization methods for decision-making under uncertainty," European Journal of Operational Research, Elsevier, vol. 320(2), pages 271-289.
    14. Alexander Tesch, 2020. "A polyhedral study of event-based models for the resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 23(2), pages 233-251, April.
    15. Yuli Wang & Wenjuan Fan & Shaowen Lan & Shuwan Zhu & Jianmei Du, 2025. "An integrated operating room and physician scheduling problem solved by a hybrid variable neighborhood search-based algorithm," Journal of Combinatorial Optimization, Springer, vol. 50(1), pages 1-35, August.
    16. Zsolt T. Kosztyán & Eszter Bogdány & István Szalkai & Marcell T. Kurbucz, 2022. "Impacts of synergies on software project scheduling," Annals of Operations Research, Springer, vol. 312(2), pages 883-908, May.
    17. Rob Eynde & Mario Vanhoucke, 2020. "Resource-constrained multi-project scheduling: benchmark datasets and decoupled scheduling," Journal of Scheduling, Springer, vol. 23(3), pages 301-325, June.
    18. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    19. Kosztyán, Zsolt T. & Jakab, Róbert & Novák, Gergely & Hegedűs, Csaba, 2020. "Survive IT! Survival analysis of IT project planning approaches," Operations Research Perspectives, Elsevier, vol. 7(C).
    20. Xuecheng Tian & Yanxia Guan & Shuaian Wang, 2023. "A Decision-Focused Learning Framework for Vessel Selection Problem," Mathematics, MDPI, vol. 11(16), pages 1-13, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:326:y:2025:i:2:p:374-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.