IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v308y2023i1p1-18.html
   My bibliography  Save this article

Educational timetabling: Problems, benchmarks, and state-of-the-art results

Author

Listed:
  • Ceschia, Sara
  • Di Gaspero, Luca
  • Schaerf, Andrea

Abstract

We propose a survey of the research contributions on the field of Educational Timetabling with a specific focus on “standard” formulations and the corresponding benchmark instances. We identify six of such formulations and we discuss their features, pointing out their relevance and usability. Other available formulations and datasets are also reviewed and briefly discussed. Subsequently, we report the main state-of-the-art results on the selected benchmarks, in terms of solution quality (upper and lower bounds), search techniques, running times, and other side settings.

Suggested Citation

  • Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
  • Handle: RePEc:eee:ejores:v:308:y:2023:i:1:p:1-18
    DOI: 10.1016/j.ejor.2022.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722005641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roberto Asín Achá & Robert Nieuwenhuis, 2014. "Curriculum-based course timetabling with SAT and MaxSAT," Annals of Operations Research, Springer, vol. 218(1), pages 71-91, July.
    2. Nelishia Pillay, 2014. "A survey of school timetabling research," Annals of Operations Research, Springer, vol. 218(1), pages 261-293, July.
    3. Burke, Edmund Kieran & Petrovic, Sanja, 2002. "Recent research directions in automated timetabling," European Journal of Operational Research, Elsevier, vol. 140(2), pages 266-280, July.
    4. Michele Battistutta & Sara Ceschia & Fabio De Cesco & Luca Di Gaspero & Andrea Schaerf, 2019. "Modelling and solving the thesis defense timetabling problem," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(7), pages 1039-1050, July.
    5. Gerhard Post & Samad Ahmadi & Sophia Daskalaki & Jeffrey Kingston & Jari Kyngas & Cimmo Nurmi & David Ranson, 2012. "An XML format for benchmarks in High School Timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 385-397, April.
    6. Goh, Say Leng & Kendall, Graham & Sabar, Nasser R., 2017. "Improved local search approaches to solve the post enrolment course timetabling problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 17-29.
    7. Gerhard Post & Jeffrey Kingston & Samad Ahmadi & Sophia Daskalaki & Christos Gogos & Jari Kyngas & Cimmo Nurmi & Nysret Musliu & Nelishia Pillay & Haroldo Santos & Andrea Schaerf, 2014. "XHSTT: an XML archive for high school timetabling problems in different countries," Annals of Operations Research, Springer, vol. 218(1), pages 295-301, July.
    8. De Boeck, Liesje & Beliën, Jeroen & Creemers, Stefan, 2016. "A column generation approach for solving the examination-timetabling problemAuthor-Name: Woumans, Gert," European Journal of Operational Research, Elsevier, vol. 253(1), pages 178-194.
    9. Akbarzadeh, Babak & Maenhout, Broos, 2021. "A decomposition-based heuristic procedure for the Medical Student Scheduling problem," European Journal of Operational Research, Elsevier, vol. 288(1), pages 63-79.
    10. Yuri Bykov & Sanja Petrovic, 2016. "A Step Counting Hill Climbing Algorithm applied to University Examination Timetabling," Journal of Scheduling, Springer, vol. 19(4), pages 479-492, August.
    11. George Henrique Godim Fonseca & Haroldo Gambini Santos & Túlio Ângelo Machado Toffolo & Samuel Souza Brito & Marcone Jamilson Freitas Souza, 2016. "GOAL solver: a hybrid local search based solver for high school timetabling," Annals of Operations Research, Springer, vol. 239(1), pages 77-97, April.
    12. Stidsen, Thomas & Pisinger, David & Vigo, Daniele, 2018. "Scheduling EURO-k conferences," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1138-1147.
    13. Cacchiani, Valentina & Toth, Paolo, 2012. "Nominal and robust train timetabling problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 727-737.
    14. Michele Battistutta & Andrea Schaerf & Tommaso Urli, 2017. "Feature-based tuning of single-stage simulated annealing for examination timetabling," Annals of Operations Research, Springer, vol. 252(2), pages 239-254, May.
    15. Hadrien Cambazard & Emmanuel Hebrard & Barry O’Sullivan & Alexandre Papadopoulos, 2012. "Local search and constraint programming for the post enrolment-based course timetabling problem," Annals of Operations Research, Springer, vol. 194(1), pages 111-135, April.
    16. Leo Lopes & Kate Smith-Miles, 2013. "Generating Applicable Synthetic Instances for Branch Problems," Operations Research, INFORMS, vol. 61(3), pages 563-577, June.
    17. Michael Lindahl & Matias Sørensen & Thomas R. Stidsen, 2018. "A fix-and-optimize matheuristic for university timetabling," Journal of Heuristics, Springer, vol. 24(4), pages 645-665, August.
    18. Edmund K. Burke & Yuri Bykov, 2016. "An Adaptive Flex-Deluge Approach to University Exam Timetabling," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 781-794, November.
    19. Say Leng Goh & Graham Kendall & Nasser R. Sabar, 2019. "Simulated annealing with improved reheating and learning for the post enrolment course timetabling problem," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(6), pages 873-888, June.
    20. Lemos, Alexandre & Melo, Francisco S. & Monteiro, Pedro T. & Lynce, Inês, 2019. "Room usage optimization in timetabling: A case study at Universidade de Lisboa," Operations Research Perspectives, Elsevier, vol. 6(C).
    21. Barry McCollum & Andrea Schaerf & Ben Paechter & Paul McMullan & Rhyd Lewis & Andrew J. Parkes & Luca Di Gaspero & Rong Qu & Edmund K. Burke, 2010. "Setting the Research Agenda in Automated Timetabling: The Second International Timetabling Competition," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 120-130, February.
    22. Andrea Bettinelli & Valentina Cacchiani & Roberto Roberti & Paolo Toth, 2015. "An overview of curriculum-based course timetabling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 313-349, July.
    23. Alexander Kiefer & Richard F. Hartl & Alexander Schnell, 2017. "Adaptive large neighborhood search for the curriculum-based course timetabling problem," Annals of Operations Research, Springer, vol. 252(2), pages 255-282, May.
    24. Dorneles, Árton P. & de Araújo, Olinto C.B. & Buriol, Luciana S., 2017. "A column generation approach to high school timetabling modeled as a multicommodity flow problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 685-695.
    25. Niels-Christian Fink Bagger & Guy Desaulniers & Jacques Desrosiers, 2019. "Daily course pattern formulation and valid inequalities for the curriculum-based course timetabling problem," Journal of Scheduling, Springer, vol. 22(2), pages 155-172, April.
    26. Bagger, Niels-Christian F. & Sørensen, Matias & Stidsen, Thomas R., 2019. "Dantzig–Wolfe decomposition of the daily course pattern formulation for curriculum-based course timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 430-446.
    27. Andrea Bettinelli & Valentina Cacchiani & Roberto Roberti & Paolo Toth, 2015. "Rejoinder on: an overview of curriculum-based course timetabling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 366-368, July.
    28. Moritz Mühlenthaler & Rolf Wanka, 2016. "Fairness in academic course timetabling," Annals of Operations Research, Springer, vol. 239(1), pages 171-188, April.
    29. Gerhard Post & Luca Gaspero & Jeffrey H. Kingston & Barry McCollum & Andrea Schaerf, 2016. "The Third International Timetabling Competition," Annals of Operations Research, Springer, vol. 239(1), pages 69-75, April.
    30. Van Bulck, David & Goossens, Dries & Schönberger, Jörn & Guajardo, Mario, 2020. "RobinX: A three-field classification and unified data format for round-robin sports timetabling," European Journal of Operational Research, Elsevier, vol. 280(2), pages 568-580.
    31. Lewis, R. & Thompson, J., 2015. "Analysing the effects of solution space connectivity with an effective metaheuristic for the course timetabling problem," European Journal of Operational Research, Elsevier, vol. 240(3), pages 637-648.
    32. Say Leng Goh & Graham Kendall & Nasser R. Sabar & Salwani Abdullah, 2020. "An effective hybrid local search approach for the post enrolment course timetabling problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1131-1163, December.
    33. Efstratios Rappos & Eric Thiémard & Stephan Robert & Jean-François Hêche, 2022. "A mixed-integer programming approach for solving university course timetabling problems," Journal of Scheduling, Springer, vol. 25(4), pages 391-404, August.
    34. Fonseca, George H.G. & Santos, Haroldo G. & Carrano, Eduardo G. & Stidsen, Thomas J.R., 2017. "Integer programming techniques for educational timetabling," European Journal of Operational Research, Elsevier, vol. 262(1), pages 28-39.
    35. Tomáš Müller & Keith Murray, 2010. "Comprehensive approach to student sectioning," Annals of Operations Research, Springer, vol. 181(1), pages 249-269, December.
    36. Burke, Edmund K. & Bykov, Yuri, 2017. "The late acceptance Hill-Climbing heuristic," European Journal of Operational Research, Elsevier, vol. 258(1), pages 70-78.
    37. Sara Ceschia & Nguyen Dang & Patrick Causmaecker & Stefaan Haspeslagh & Andrea Schaerf, 2019. "The Second International Nurse Rostering Competition," Annals of Operations Research, Springer, vol. 274(1), pages 171-186, March.
    38. Nuno Leite & Fernando Melício & Agostinho C. Rosa, 2021. "A Fast Threshold Acceptance Algorithm for the Examination Timetabling Problem," International Series in Operations Research & Management Science, in: Zilla Sinuany-Stern (ed.), Handbook of Operations Research and Management Science in Higher Education, chapter 0, pages 323-363, Springer.
    39. Arnaud Coster & Nysret Musliu & Andrea Schaerf & Johannes Schoisswohl & Kate Smith-Miles, 2022. "Algorithm selection and instance space analysis for curriculum-based course timetabling," Journal of Scheduling, Springer, vol. 25(1), pages 35-58, February.
    40. Rasmus Ø. Mikkelsen & Dennis S. Holm, 2022. "A parallelized matheuristic for the International Timetabling Competition 2019," Journal of Scheduling, Springer, vol. 25(4), pages 429-452, August.
    41. Edmund K. Burke & Jakub Mareček & Andrew J. Parkes & Hana Rudová, 2008. "Penalising Patterns in Timetables: Novel Integer Programming Formulations," Operations Research Proceedings, in: Jörg Kalcsics & Stefan Nickel (ed.), Operations Research Proceedings 2007, pages 409-414, Springer.
    42. Gert Woumans & Liesje de Boeck & Jeroen Beliën & Stefan Creemers, 2016. "A column generation approach for solving the examination-timetabling problem," Post-Print hal-01744776, HAL.
    43. Alex Bonutti & Fabio Cesco & Luca Gaspero & Andrea Schaerf, 2012. "Benchmarking curriculum-based course timetabling: formulations, data formats, instances, validation, visualization, and results," Annals of Operations Research, Springer, vol. 194(1), pages 59-70, April.
    44. Stefaan Haspeslagh & Patrick De Causmaecker & Andrea Schaerf & Martin Stølevik, 2014. "The first international nurse rostering competition 2010," Annals of Operations Research, Springer, vol. 218(1), pages 221-236, July.
    45. Dennis S. Holm & Rasmus Ø. Mikkelsen & Matias Sørensen & Thomas J. R. Stidsen, 2022. "A graph-based MIP formulation of the International Timetabling Competition 2019," Journal of Scheduling, Springer, vol. 25(4), pages 405-428, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Almeida, João & Santos, Daniel & Figueira, José Rui & Francisco, Alexandre P., 2024. "A multi-objective mixed integer linear programming model for thesis defence scheduling," European Journal of Operational Research, Elsevier, vol. 312(1), pages 92-116.
    2. Van Bulck, David & Goossens, Dries & Clarner, Jan-Patrick & Dimitsas, Angelos & Fonseca, George H.G. & Lamas-Fernandez, Carlos & Lester, Martin Mariusz & Pedersen, Jaap & Phillips, Antony E. & Rosati,, 2024. "Which algorithm to select in sports timetabling?," European Journal of Operational Research, Elsevier, vol. 318(2), pages 575-591.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Dunke & Stefan Nickel, 2023. "A matheuristic for customized multi-level multi-criteria university timetabling," Annals of Operations Research, Springer, vol. 328(2), pages 1313-1348, September.
    2. Esmaeilbeigi, Rasul & Mak-Hau, Vicky & Yearwood, John & Nguyen, Vivian, 2022. "The multiphase course timetabling problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1098-1119.
    3. Andrea Bettinelli & Valentina Cacchiani & Roberto Roberti & Paolo Toth, 2015. "An overview of curriculum-based course timetabling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 313-349, July.
    4. Efstratios Rappos & Eric Thiémard & Stephan Robert & Jean-François Hêche, 2022. "A mixed-integer programming approach for solving university course timetabling problems," Journal of Scheduling, Springer, vol. 25(4), pages 391-404, August.
    5. P. Solano Cutillas & D. Pérez-Perales & M. M. E. Alemany Díaz, 2022. "A mathematical programming tool for an efficient decision-making on teaching assignment under non-regular time schedules," Operational Research, Springer, vol. 22(3), pages 2899-2942, July.
    6. Van Bulck, David & Goossens, Dries, 2023. "The international timetabling competition on sports timetabling (ITC2021)," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1249-1267.
    7. Arnaud Coster & Nysret Musliu & Andrea Schaerf & Johannes Schoisswohl & Kate Smith-Miles, 2022. "Algorithm selection and instance space analysis for curriculum-based course timetabling," Journal of Scheduling, Springer, vol. 25(1), pages 35-58, February.
    8. Mats Carlsson & Sara Ceschia & Luca Gaspero & Rasmus Ørnstrup Mikkelsen & Andrea Schaerf & Thomas Jacob Riis Stidsen, 2023. "Exact and metaheuristic methods for a real-world examination timetabling problem," Journal of Scheduling, Springer, vol. 26(4), pages 353-367, August.
    9. Felipe Rosa-Rivera & Jose I. Nunez-Varela & Cesar A. Puente-Montejano & Sandra E. Nava-Muñoz, 2021. "Measuring the complexity of university timetabling instances," Journal of Scheduling, Springer, vol. 24(1), pages 103-121, February.
    10. Bagger, Niels-Christian F. & Sørensen, Matias & Stidsen, Thomas R., 2019. "Dantzig–Wolfe decomposition of the daily course pattern formulation for curriculum-based course timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 430-446.
    11. Mutsunori Banbara & Katsumi Inoue & Benjamin Kaufmann & Tenda Okimoto & Torsten Schaub & Takehide Soh & Naoyuki Tamura & Philipp Wanko, 2019. "$${\varvec{teaspoon}}$$ teaspoon : solving the curriculum-based course timetabling problems with answer set programming," Annals of Operations Research, Springer, vol. 275(1), pages 3-37, April.
    12. Saviniec, Landir & Santos, Maristela O. & Costa, Alysson M., 2018. "Parallel local search algorithms for high school timetabling problems," European Journal of Operational Research, Elsevier, vol. 265(1), pages 81-98.
    13. Alexander Kiefer & Richard F. Hartl & Alexander Schnell, 2017. "Adaptive large neighborhood search for the curriculum-based course timetabling problem," Annals of Operations Research, Springer, vol. 252(2), pages 255-282, May.
    14. Ciamac C. Moallemi & Utkarsh Patange, 2024. "Hybrid Scheduling with Mixed-Integer Programming at Columbia Business School," Interfaces, INFORMS, vol. 54(3), pages 222-240, May.
    15. Alexandre Lemos & Pedro T. Monteiro & Inês Lynce, 2021. "Disruptions in timetables: a case study at Universidade de Lisboa," Journal of Scheduling, Springer, vol. 24(1), pages 35-48, February.
    16. Dennis S. Holm & Rasmus Ø. Mikkelsen & Matias Sørensen & Thomas J. R. Stidsen, 2022. "A graph-based MIP formulation of the International Timetabling Competition 2019," Journal of Scheduling, Springer, vol. 25(4), pages 405-428, August.
    17. Dorneles, Árton P. & de Araújo, Olinto C.B. & Buriol, Luciana S., 2017. "A column generation approach to high school timetabling modeled as a multicommodity flow problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 685-695.
    18. Kadri Sylejmani & Edon Gashi & Adrian Ymeri, 2023. "Simulated annealing with penalization for university course timetabling," Journal of Scheduling, Springer, vol. 26(5), pages 497-517, October.
    19. Seizinger, Markus & Brunner, Jens O., 2023. "Optimized planning of nursing curricula in dual vocational schools focusing on the German health care system," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1223-1241.
    20. Niels-Christian F. Bagger & Simon Kristiansen & Matias Sørensen & Thomas R. Stidsen, 2019. "Flow formulations for curriculum-based course timetabling," Annals of Operations Research, Springer, vol. 280(1), pages 121-150, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:308:y:2023:i:1:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.