IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v194y2012i1p385-39710.1007-s10479-010-0699-9.html
   My bibliography  Save this article

An XML format for benchmarks in High School Timetabling

Author

Listed:
  • Gerhard Post
  • Samad Ahmadi
  • Sophia Daskalaki
  • Jeffrey Kingston
  • Jari Kyngas
  • Cimmo Nurmi
  • David Ranson

Abstract

The High School Timetabling Problem is amongst the most widely used timetabling problems. This problem has varying structures in different high schools even within the same country or educational system. Due to lack of standard benchmarks and data formats this problem has been studied less than other timetabling problems in the literature. In this paper we describe the High School Timetabling Problem in several countries in order to find a common set of constraints and objectives. Our main goal is to provide exchangeable benchmarks for this problem. To achieve this we propose a standard data format suitable for different countries and educational systems, defined by an XML schema. The schema and datasets are available online. Copyright The Author(s) 2012

Suggested Citation

  • Gerhard Post & Samad Ahmadi & Sophia Daskalaki & Jeffrey Kingston & Jari Kyngas & Cimmo Nurmi & David Ranson, 2012. "An XML format for benchmarks in High School Timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 385-397, April.
  • Handle: RePEc:spr:annopr:v:194:y:2012:i:1:p:385-397:10.1007/s10479-010-0699-9
    DOI: 10.1007/s10479-010-0699-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-010-0699-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-010-0699-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Werra, D., 1985. "An introduction to timetabling," European Journal of Operational Research, Elsevier, vol. 19(2), pages 151-162, February.
    2. Burke, Edmund Kieran & Petrovic, Sanja, 2002. "Recent research directions in automated timetabling," European Journal of Operational Research, Elsevier, vol. 140(2), pages 266-280, July.
    3. de Gans, Onno B., 1981. "A computer timetabling system for secondary schools in the Netherlands," European Journal of Operational Research, Elsevier, vol. 7(2), pages 175-182, June.
    4. D. Abramson, 1991. "Constructing School Timetables Using Simulated Annealing: Sequential and Parallel Algorithms," Management Science, INFORMS, vol. 37(1), pages 98-113, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    2. Dorneles, Árton P. & de Araújo, Olinto C.B. & Buriol, Luciana S., 2017. "A column generation approach to high school timetabling modeled as a multicommodity flow problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 685-695.
    3. Gerhard Post & Luca Gaspero & Jeffrey H. Kingston & Barry McCollum & Andrea Schaerf, 2016. "The Third International Timetabling Competition," Annals of Operations Research, Springer, vol. 239(1), pages 69-75, April.
    4. Ahmed Kheiri & Ender Özcan & Andrew J. Parkes, 2016. "A stochastic local search algorithm with adaptive acceptance for high-school timetabling," Annals of Operations Research, Springer, vol. 239(1), pages 135-151, April.
    5. Saviniec, Landir & Santos, Maristela O. & Costa, Alysson M., 2018. "Parallel local search algorithms for high school timetabling problems," European Journal of Operational Research, Elsevier, vol. 265(1), pages 81-98.
    6. Jeffrey H. Kingston, 2016. "Repairing high school timetables with polymorphic ejection chains," Annals of Operations Research, Springer, vol. 239(1), pages 119-134, April.
    7. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    8. Tomáš Müller & Hana Rudová, 2016. "Real-life curriculum-based timetabling with elective courses and course sections," Annals of Operations Research, Springer, vol. 239(1), pages 153-170, April.
    9. Emir Demirović & Nysret Musliu, 2017. "Modeling high school timetabling with bitvectors," Annals of Operations Research, Springer, vol. 252(2), pages 215-238, May.
    10. Kaixiang Zhu & Lily D. Li & Michael Li, 2021. "School Timetabling Optimisation Using Artificial Bee Colony Algorithm Based on a Virtual Searching Space Method," Mathematics, MDPI, vol. 10(1), pages 1-19, December.
    11. David Van Bulck & Dries Goossens & Jo¨rn Scho¨nberger & Mario Guajardo, 2020. "An Instance Data Repository for the Round-robin Sports Timetabling Problem," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 45(2), pages 184-200, May.
    12. Smet, Pieter & Brucker, Peter & De Causmaecker, Patrick & Vanden Berghe, Greet, 2016. "Polynomially solvable personnel rostering problems," European Journal of Operational Research, Elsevier, vol. 249(1), pages 67-75.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    2. Drexl, Andreas & Salewski, Frank, 1997. "Distribution requirements and compactness constraints in school timetabling," European Journal of Operational Research, Elsevier, vol. 102(1), pages 193-214, October.
    3. Schirmer, Andreas & Potzhar, Kathrin, 2001. "Professional course scheduling in airline transport pilot training: A case from Lufthansa flight training," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 539, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    5. De Causmaecker, Patrick & Demeester, Peter & Vanden Berghe, Greet, 2009. "A decomposed metaheuristic approach for a real-world university timetabling problem," European Journal of Operational Research, Elsevier, vol. 195(1), pages 307-318, May.
    6. Haase, Knut & Latteier, Jörg & Schirmer, Andreas, 1997. "The course scheduling problem at Lufthansa Technical Training," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 441, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    7. Haase, Knut & Latteier, Jörg & Schirmer, Andreas, 1997. "Course planning at Lufthansa technical training: Constructing more profitable schedules," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 442, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    8. C Beyrouthy & E K Burke & D Landa-Silva & B McCollum & P McMullan & A J Parkes, 2009. "Towards improving the utilization of university teaching space," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 130-143, January.
    9. R Qu & E K Burke, 2009. "Hybridizations within a graph-based hyper-heuristic framework for university timetabling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1273-1285, September.
    10. Oliver Czibula & Hanyu Gu & Aaron Russell & Yakov Zinder, 2017. "A multi-stage IP-based heuristic for class timetabling and trainer rostering," Annals of Operations Research, Springer, vol. 252(2), pages 305-333, May.
    11. Dimopoulou, M. & Miliotis, P., 2001. "Implementation of a university course and examination timetabling system," European Journal of Operational Research, Elsevier, vol. 130(1), pages 202-213, April.
    12. Kahar, M.N.M. & Kendall, G., 2010. "The examination timetabling problem at Universiti Malaysia Pahang: Comparison of a constructive heuristic with an existing software solution," European Journal of Operational Research, Elsevier, vol. 207(2), pages 557-565, December.
    13. G N Beligiannis & C Moschopoulos & S D Likothanassis, 2009. "A genetic algorithm approach to school timetabling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 23-42, January.
    14. Nossack, Jenny, 2022. "Therapy scheduling and therapy planning at hospitals," Omega, Elsevier, vol. 109(C).
    15. S Abdullah & S Ahmadi & E K Burke & M Dror & B McCollum, 2007. "A tabu-based large neighbourhood search methodology for the capacitated examination timetabling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1494-1502, November.
    16. Urban, Timothy L. & Russell, Robert A., 2003. "Scheduling sports competitions on multiple venues," European Journal of Operational Research, Elsevier, vol. 148(2), pages 302-311, July.
    17. Fabian Dunke & Stefan Nickel, 2023. "A matheuristic for customized multi-level multi-criteria university timetabling," Annals of Operations Research, Springer, vol. 328(2), pages 1313-1348, September.
    18. Salewski, Frank & Schirmer, Andreas & Drexl, Andreas, 1997. "Project scheduling under resource and mode identity constraints: Model, complexity, methods, and application," European Journal of Operational Research, Elsevier, vol. 102(1), pages 88-110, October.
    19. Salewski, Frank & Schirmer, Andreas & Drexl, Andreas, 1996. "Project Scheduling under Resource and Mode Identity Constraints. Part I: Model, Complexity Status, and Methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 387, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    20. Hertz, Alain & Robert, Vincent, 1998. "Constructing a course schedule by solving a series of assignment type problems," European Journal of Operational Research, Elsevier, vol. 108(3), pages 585-603, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:194:y:2012:i:1:p:385-397:10.1007/s10479-010-0699-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.