Author
Listed:
- Yang-Kuei Lin
(Department of Industrial Engineering and Systems Management, Feng Chia University, Taichung 407102, Taiwan)
- Chin Soon Chong
(Information and Communications Technology (Information Security), Singapore Institute of Technology, 1 Punggol Coast Road, Singapore 828608, Singapore)
Abstract
Operating room (OR) scheduling problems are often addressed using deterministic models that assume surgery durations are known in advance. However, such assumptions fail to reflect the uncertainty that often occurs in real surgical environments, especially during the surgery and recovery stages. This study focuses on a robust scheduling problem involving a three-stage surgical process that includes pre-surgery, surgery, and post-surgery stages. The scheduling needs to coordinate multiple resources—pre-operative holding unit (PHU) beds, ORs, and post-anesthesia care unit (PACU) beds—while following a strict no-wait rule to keep patient flow continuous without delays between stages. The main goal is to minimize the makespan and improve schedule robustness when surgery and post-surgery durations are uncertain. To solve this problem, we propose a Genetic Algorithm for Robust Scheduling (GARS), which evaluates solutions using a scenario-based robustness criterion derived from multiple sampled instances. GARS is compared with four other algorithms: a deterministic GA (GAD), a random search (BRS), a greedy randomized insertion and swap heuristic (GRIS), and an improved version of GARS with simulated annealing (GARS_SA). The results from different problem sizes and uncertainty levels show that GARS and GARS_SA consistently perform better than the other algorithms. In large-scale tests with moderate uncertainty (30 surgeries, α = 0.5), GARS achieves an average makespan of 633.85, a standard deviation of 40.81, and a worst-case performance ratio (WPR) of 1.00, while GAD reaches 673.75, 54.21, and 1.11, respectively. GARS can achieve robust performance without using any extra techniques to strengthen the search process. Its structure remains simple and easy to use, making it a practical and effective approach for creating reliable and efficient surgical schedules under uncertainty.
Suggested Citation
Yang-Kuei Lin & Chin Soon Chong, 2025.
"Solving Three-Stage Operating Room Scheduling Problems with Uncertain Surgery Durations,"
Mathematics, MDPI, vol. 13(12), pages 1-24, June.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:12:p:1973-:d:1679450
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:1973-:d:1679450. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.