IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v323y2025i2p471-489.html
   My bibliography  Save this article

Integrated differentiated time slot pricing and order dispatching with uncertain customer demand in on-demand food delivery

Author

Listed:
  • Zhang, Bo
  • Hassini, Elkafi
  • Zhou, Yun
  • Zhao, Meng
  • Hu, Xiangpei

Abstract

Differentiated time slot pricing (DTSP) is a promising approach to enhance the efficiency and cost-effectiveness of food delivery platforms by influencing customers’ choices regarding delivery time slots. In this paper, we investigate the integrated problem of DTSP at the tactical level and order dispatching at the operational level, formulating it as a two-stage stochastic programming model. The first-stage model determines the delivery price for each time slot to maximize the system’s expected profit. The second-stage model generates the optimal order dispatching plan to minimize the generalized system cost under each stochastic scenario. To efficiently estimate the order dispatching cost for each scenario, we develop an order consolidation dispatching algorithm (OCDA) to solve the second-stage order dispatching subproblem under each demand scenario. Building on OCDA, we propose a hybrid adaptive large neighborhood search (HALNS) heuristic to solve the integrated problem. Extensive case studies based on real-world data verify the effectiveness of the proposed approach and demonstrate the benefits of DTSP strategy. Our numerical analysis provides important managerial insights for operating food delivery platforms.

Suggested Citation

  • Zhang, Bo & Hassini, Elkafi & Zhou, Yun & Zhao, Meng & Hu, Xiangpei, 2025. "Integrated differentiated time slot pricing and order dispatching with uncertain customer demand in on-demand food delivery," European Journal of Operational Research, Elsevier, vol. 323(2), pages 471-489.
  • Handle: RePEc:eee:ejores:v:323:y:2025:i:2:p:471-489
    DOI: 10.1016/j.ejor.2024.12.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724009548
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.12.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Matthias Soppert & Claudius Steinhardt & Christian Müller & Jochen Gönsch, 2022. "Differentiated Pricing of Shared Mobility Systems Considering Network Effects," Transportation Science, INFORMS, vol. 56(5), pages 1279-1303, September.
    2. Wenzheng Mao & Liu Ming & Ying Rong & Christopher S. Tang & Huan Zheng, 2022. "On-Demand Meal Delivery Platforms: Operational Level Data and Research Opportunities," Manufacturing & Service Operations Management, INFORMS, vol. 24(5), pages 2535-2542, September.
    3. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    4. Baris Yildiz & Martin Savelsbergh, 2019. "Provably High-Quality Solutions for the Meal Delivery Routing Problem," Transportation Science, INFORMS, vol. 53(5), pages 1372-1388, September.
    5. Francis J. Vasko, 1984. "An efficient heuristic for large set covering problems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 31(1), pages 163-171, March.
    6. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2005. "Decision Support for Consumer Direct Grocery Initiatives," Transportation Science, INFORMS, vol. 39(3), pages 313-327, August.
    7. Tong, Tingting & Dai, Hongyan & Xiao, Qin & Yan, Nina, 2020. "Will dynamic pricing outperform? Theoretical analysis and empirical evidence from O2O on-demand food service market," International Journal of Production Economics, Elsevier, vol. 219(C), pages 375-385.
    8. Robert Klein & Jochen Mackert & Michael Neugebauer & Claudius Steinhardt, 2018. "A model-based approximation of opportunity cost for dynamic pricing in attended home delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 969-996, October.
    9. Potvin, Jean-Yves & Rousseau, Jean-Marc, 1993. "A parallel route building algorithm for the vehicle routing and scheduling problem with time windows," European Journal of Operational Research, Elsevier, vol. 66(3), pages 331-340, May.
    10. Vivek F. Farias & Srikanth Jagabathula & Devavrat Shah, 2013. "A Nonparametric Approach to Modeling Choice with Limited Data," Management Science, INFORMS, vol. 59(2), pages 305-322, December.
    11. Xinan Yang & Arne K. Strauss & Christine S. M. Currie & Richard Eglese, 2016. "Choice-Based Demand Management and Vehicle Routing in E-Fulfillment," Transportation Science, INFORMS, vol. 50(2), pages 473-488, May.
    12. Ann Melissa Campbell & Martin Savelsbergh, 2006. "Incentive Schemes for Attended Home Delivery Services," Transportation Science, INFORMS, vol. 40(3), pages 327-341, August.
    13. Lan, Guanghui & DePuy, Gail W. & Whitehouse, Gary E., 2007. "An effective and simple heuristic for the set covering problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1387-1403, February.
    14. Haoyuan Hu & Ying Zhang & Jiangwen Wei & Yang Zhan & Xinhui Zhang & Shaojian Huang & Guangrui Ma & Yuming Deng & Siwei Jiang, 2022. "Alibaba Vehicle Routing Algorithms Enable Rapid Pick and Delivery," Interfaces, INFORMS, vol. 52(1), pages 27-41, January.
    15. Garrett van Ryzin & Gustavo Vulcano, 2015. "A Market Discovery Algorithm to Estimate a General Class of Nonparametric Choice Models," Management Science, INFORMS, vol. 61(2), pages 281-300, February.
    16. Abdollahi, Mohammad & Yang, Xinan & Nasri, Moncef Ilies & Fairbank, Michael, 2023. "Demand management in time-slotted last-mile delivery via dynamic routing with forecast orders," European Journal of Operational Research, Elsevier, vol. 309(2), pages 704-718.
    17. Jiateng Yin & Lixing Yang & Andrea D’Ariano & Tao Tang & Ziyou Gao, 2022. "Integrated Backup Rolling Stock Allocation and Timetable Rescheduling with Uncertain Time-Variant Passenger Demand Under Disruptive Events," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3234-3258, November.
    18. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
    19. Klein, Vienna & Steinhardt, Claudius, 2023. "Dynamic demand management and online tour planning for same-day delivery," European Journal of Operational Research, Elsevier, vol. 307(2), pages 860-886.
    20. Robert Klein & Michael Neugebauer & Dimitri Ratkovitch & Claudius Steinhardt, 2019. "Differentiated Time Slot Pricing Under Routing Considerations in Attended Home Delivery," Service Science, INFORMS, vol. 53(1), pages 236-255, February.
    21. Sheng Liu & Long He & Zuo-Jun Max Shen, 2021. "On-Time Last-Mile Delivery: Order Assignment with Travel-Time Predictors," Management Science, INFORMS, vol. 67(7), pages 4095-4119, July.
    22. Marlin W. Ulmer & Barrett W. Thomas & Ann Melissa Campbell & Nicholas Woyak, 2021. "The Restaurant Meal Delivery Problem: Dynamic Pickup and Delivery with Deadlines and Random Ready Times," Transportation Science, INFORMS, vol. 55(1), pages 75-100, 1-2.
    23. Strauss, Arne & Gülpınar, Nalan & Zheng, Yijun, 2021. "Dynamic pricing of flexible time slots for attended home delivery," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1022-1041.
    24. Wang, Zheng, 2018. "Delivering meals for multiple suppliers: Exclusive or sharing logistics service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 496-512.
    25. Waßmuth, Katrin & Köhler, Charlotte & Agatz, Niels & Fleischmann, Moritz, 2023. "Demand management for attended home delivery—A literature review," European Journal of Operational Research, Elsevier, vol. 311(3), pages 801-815.
    26. Yang, Xinan & Strauss, Arne K., 2017. "An approximate dynamic programming approach to attended home delivery management," European Journal of Operational Research, Elsevier, vol. 263(3), pages 935-945.
    27. Asdemir, Kursad & Jacob, Varghese S. & Krishnan, Ramayya, 2009. "Dynamic pricing of multiple home delivery options," European Journal of Operational Research, Elsevier, vol. 196(1), pages 246-257, July.
    28. Liu, Shan & Jiang, Hai & Chen, Shuiping & Ye, Jing & He, Renqing & Sun, Zhizhao, 2020. "Integrating Dijkstra’s algorithm into deep inverse reinforcement learning for food delivery route planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-François Cordeau & Manuel Iori & Dario Vezzali, 2024. "An updated survey of attended home delivery and service problems with a focus on applications," Annals of Operations Research, Springer, vol. 343(2), pages 885-922, December.
    2. Jean-François Cordeau & Manuel Iori & Dario Vezzali, 2023. "A survey of attended home delivery and service problems with a focus on applications," 4OR, Springer, vol. 21(4), pages 547-583, December.
    3. Waßmuth, Katrin & Köhler, Charlotte & Agatz, Niels & Fleischmann, Moritz, 2023. "Demand management for attended home delivery—A literature review," European Journal of Operational Research, Elsevier, vol. 311(3), pages 801-815.
    4. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
    5. Koch, Sebastian & Klein, Robert, 2020. "Route-based approximate dynamic programming for dynamic pricing in attended home delivery," European Journal of Operational Research, Elsevier, vol. 287(2), pages 633-652.
    6. van der Hagen, L. & Agatz, N.A.H. & Spliet, R. & Visser, T.R. & Kok, A.L., 2022. "Machine Learning-Based Feasibility Checks for Dynamic Time Slot Management," ERIM Report Series Research in Management ERS-2022-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Avraham, Edison & Raviv, Tal, 2021. "The steady-state mobile personnel booking problem," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 266-288.
    8. Strauss, Arne & Gülpınar, Nalan & Zheng, Yijun, 2021. "Dynamic pricing of flexible time slots for attended home delivery," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1022-1041.
    9. Lang, Magdalena A.K. & Cleophas, Catherine & Ehmke, Jan Fabian, 2021. "Multi-criteria decision making in dynamic slotting for attended home deliveries," Omega, Elsevier, vol. 102(C).
    10. Magdalena A. K. Lang & Catherine Cleophas & Jan Fabian Ehmke, 2021. "Anticipative Dynamic Slotting for Attended Home Deliveries," SN Operations Research Forum, Springer, vol. 2(4), pages 1-39, December.
    11. Klein, Vienna & Steinhardt, Claudius, 2023. "Dynamic demand management and online tour planning for same-day delivery," European Journal of Operational Research, Elsevier, vol. 307(2), pages 860-886.
    12. Paradiso, Rosario & Roberti, Roberto & Ulmer, Marlin, 2025. "Lookahead scenario relaxation for dynamic time window assignment in service routing," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
    13. Oyama, Yuki & Fukuda, Daisuke & Imura, Naoto & Nishinari, Katsuhiro, 2024. "Do people really want fast and precisely scheduled delivery? E-commerce customers' valuations of home delivery timing," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    14. Robert Klein & Michael Neugebauer & Dimitri Ratkovitch & Claudius Steinhardt, 2019. "Differentiated Time Slot Pricing Under Routing Considerations in Attended Home Delivery," Service Science, INFORMS, vol. 53(1), pages 236-255, February.
    15. Abdollahi, Mohammad & Yang, Xinan & Nasri, Moncef Ilies & Fairbank, Michael, 2023. "Demand management in time-slotted last-mile delivery via dynamic routing with forecast orders," European Journal of Operational Research, Elsevier, vol. 309(2), pages 704-718.
    16. Bonomi, Valentina & Manerba, Daniele & Mansini, Renata & Zanotti, Roberto, 2025. "Optimizing Attended Home Delivery: Multiple recovery options and customer availability profiles to face synchronization failures," International Journal of Production Economics, Elsevier, vol. 279(C).
    17. Ma, Shigui & He, Yong & Gu, Ran & Yeh, Chung-Hsing, 2024. "How to cooperate in a three-tier food delivery service supply chain," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    18. Côté, Jean-François & Mansini, Renata & Raffaele, Alice, 2024. "Multi-period time window assignment for attended home delivery," European Journal of Operational Research, Elsevier, vol. 316(1), pages 295-309.
    19. Klein, Robert & Koch, Sebastian & Steinhardt, Claudius & Strauss, Arne K., 2020. "A review of revenue management: Recent generalizations and advances in industry applications," European Journal of Operational Research, Elsevier, vol. 284(2), pages 397-412.
    20. Pedro Amorim & Nicole DeHoratius & Fredrik Eng-Larsson & Sara Martins, 2024. "Customer Preferences for Delivery Service Attributes in Attended Home Delivery," Management Science, INFORMS, vol. 70(11), pages 7559-7578, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:323:y:2025:i:2:p:471-489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.