IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v40y2006i3p327-341.html
   My bibliography  Save this article

Incentive Schemes for Attended Home Delivery Services

Author

Listed:
  • Ann Melissa Campbell

    (Department of Management Sciences, Tippie College of Business, University of Iowa, Iowa City, Iowa 52242-1994)

  • Martin Savelsbergh

    (Department of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205)

Abstract

Many companies with consumer direct service models, especially grocery delivery services, have found that home delivery poses an enormous logistical challenge because of the unpredictability of demand coupled with strict delivery windows and low profit margin products. In this paper, we examine the use of incentives to influence consumer behavior to reduce delivery costs. We propose optimization models for two forms of incentives and demonstrate their value and impact through simulation studies. We conclude with a presentation of insights resulting from our efforts.

Suggested Citation

  • Ann Melissa Campbell & Martin Savelsbergh, 2006. "Incentive Schemes for Attended Home Delivery Services," Transportation Science, INFORMS, vol. 40(3), pages 327-341, August.
  • Handle: RePEc:inm:ortrsc:v:40:y:2006:i:3:p:327-341
    DOI: 10.1287/trsc.1050.0136
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1050.0136
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1050.0136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2005. "Decision Support for Consumer Direct Grocery Initiatives," Transportation Science, INFORMS, vol. 39(3), pages 313-327, August.
    2. A Larsen & O Madsen & M Solomon, 2002. "Partially dynamic vehicle routing—models and algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(6), pages 637-646, June.
    3. Ann Melissa Campbell & Martin Savelsbergh, 2004. "Efficient Insertion Heuristics for Vehicle Routing and Scheduling Problems," Transportation Science, INFORMS, vol. 38(3), pages 369-378, August.
    4. Russell W. Bent & Pascal Van Hentenryck, 2004. "Scenario-Based Planning for Partially Dynamic Vehicle Routing with Stochastic Customers," Operations Research, INFORMS, vol. 52(6), pages 977-987, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koch, Sebastian & Klein, Robert, 2020. "Route-based approximate dynamic programming for dynamic pricing in attended home delivery," European Journal of Operational Research, Elsevier, vol. 287(2), pages 633-652.
    2. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
    3. repec:iim:iimawp:14638 is not listed on IDEAS
    4. Stacy A. Voccia & Ann Melissa Campbell & Barrett W. Thomas, 2019. "The Same-Day Delivery Problem for Online Purchases," Service Science, INFORMS, vol. 53(1), pages 167-184, February.
    5. Azi, Nabila & Gendreau, Michel & Potvin, Jean-Yves, 2010. "An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles," European Journal of Operational Research, Elsevier, vol. 202(3), pages 756-763, May.
    6. Marlin W. Ulmer & Barrett W. Thomas & Dirk C. Mattfeld, 2019. "Preemptive depot returns for dynamic same-day delivery," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(4), pages 327-361, December.
    7. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    8. van Engelen, Matti & Cats, Oded & Post, Henk & Aardal, Karen, 2018. "Enhancing flexible transport services with demand-anticipatory insertion heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 110-121.
    9. Dessouky, Maged M. & Ordóñez, Fernando & Quadrifoglio, Luca, 2005. "Productivity and Cost-Effectiveness of Demand Responsive Transit Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9qj1d5s0, Institute of Transportation Studies, UC Berkeley.
    10. Klein, Vienna & Steinhardt, Claudius, 2023. "Dynamic demand management and online tour planning for same-day delivery," European Journal of Operational Research, Elsevier, vol. 307(2), pages 860-886.
    11. Marlin W. Ulmer & Dirk C. Mattfeld & Felix Köster, 2018. "Budgeting Time for Dynamic Vehicle Routing with Stochastic Customer Requests," Transportation Science, INFORMS, vol. 52(1), pages 20-37, January.
    12. Anirudh Subramanyam & Frank Mufalli & José M. Lí?nez-Aguirre & Jose M. Pinto & Chrysanthos E. Gounaris, 2021. "Robust Multiperiod Vehicle Routing Under Customer Order Uncertainty," Operations Research, INFORMS, vol. 69(1), pages 30-60, January.
    13. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    14. María I. Restrepo & Frédéric Semet & Thomas Pocreau, 2019. "Integrated Shift Scheduling and Load Assignment Optimization for Attended Home Delivery," Transportation Science, INFORMS, vol. 53(4), pages 1150-1174, July.
    15. Barrett W. Thomas, 2007. "Waiting Strategies for Anticipating Service Requests from Known Customer Locations," Transportation Science, INFORMS, vol. 41(3), pages 319-331, August.
    16. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2021. "A multi-period analysis of the integrated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 292(2), pages 483-499.
    17. Nielsen, Clara Chini & Pisinger, David, 2023. "Tactical planning for dynamic technician routing and scheduling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    18. Zhang, Jian & Luo, Kelin & Florio, Alexandre M. & Van Woensel, Tom, 2023. "Solving large-scale dynamic vehicle routing problems with stochastic requests," European Journal of Operational Research, Elsevier, vol. 306(2), pages 596-614.
    19. Azi, Nabila & Gendreau, Michel & Potvin, Jean-Yves, 2007. "An exact algorithm for a single-vehicle routing problem with time windows and multiple routes," European Journal of Operational Research, Elsevier, vol. 178(3), pages 755-766, May.
    20. D. Espinoza & R. Garcia & M. Goycoolea & G. L. Nemhauser & M. W. P. Savelsbergh, 2008. "Per-Seat, On-Demand Air Transportation Part I: Problem Description and an Integer Multicommodity Flow Model," Transportation Science, INFORMS, vol. 42(3), pages 263-278, August.
    21. Niels Agatz & Yingjie Fan & Daan Stam, 2021. "The Impact of Green Labels on Time Slot Choice and Operational Sustainability," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2285-2303, July.

    More about this item

    Keywords

    home delivery services; vehicle routing;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:40:y:2006:i:3:p:327-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.