IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v307y2023i3p1457-1473.html
   My bibliography  Save this article

Joint models for longitudinal and discrete survival data in credit scoring

Author

Listed:
  • Medina-Olivares, Victor
  • Calabrese, Raffaella
  • Crook, Jonathan
  • Lindgren, Finn

Abstract

The inclusion of time-varying covariates into survival analysis has led to better predictions of the time to default in behavioural credit scoring models. However, when these time-varying covariates are endogenous, there are two major problems: estimation bias of the survival model and lack of a prediction framework for future values of both the event and the endogenous time-varying covariates. Joint models for longitudinal and survival data is an appropriate framework to model the mutual evolution of the survival time and the endogenous time-varying covariates. To the best of our knowledge, this paper explores for the first time the application of discrete-time joint models to credit scoring. Moreover, we propose a novel extension to the joint model literature by including autoregressive terms in modelling the endogenous time-varying covariates. We present the method via simulations and by applying it to US mortgage loans. The empirical analysis shows, first, that discrete joint models can increase the discrimination performance compared to survival models. Second, when an autoregressive term is included, this performance can be further improved.

Suggested Citation

  • Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
  • Handle: RePEc:eee:ejores:v:307:y:2023:i:3:p:1457-1473
    DOI: 10.1016/j.ejor.2022.10.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722008104
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.10.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    2. Wang, Zheqi & Crook, Jonathan & Andreeva, Galina, 2020. "Reducing estimation risk using a Bayesian posterior distribution approach: Application to stress testing mortgage loan default," European Journal of Operational Research, Elsevier, vol. 287(2), pages 725-738.
    3. Lewandowski, Daniel & Kurowicka, Dorota & Joe, Harry, 2009. "Generating random correlation matrices based on vines and extended onion method," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1989-2001, October.
    4. Tony Bellotti & Jonathan Crook, 2014. "Retail credit stress testing using a discrete hazard model with macroeconomic factors," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 340-350, March.
    5. Thomas, L.C. & Ho, J. & Scherer, W.T., 2001. "Time will tell: Behavioural Scoring and the Dynamics of Consumer Credit Assessment," Papers 01-174, University of Southampton - Department of Accounting and Management Science.
    6. Paul S. Albert & Joanna H. Shih, 2010. "On Estimating the Relationship between Longitudinal Measurements and Time-to-Event Data Using a Simple Two-Stage Procedure," Biometrics, The International Biometric Society, vol. 66(3), pages 983-987, September.
    7. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    8. Allison K.C. Furgal & Ananda Sen & Jeremy M.G. Taylor, 2019. "Review and Comparison of Computational Approaches for Joint Longitudinal and Time‐to‐Event Models," International Statistical Review, International Statistical Institute, vol. 87(2), pages 393-418, August.
    9. Calabrese, Raffaella & Crook, Jonathan, 2020. "Spatial contagion in mortgage defaults: A spatial dynamic survival model with time and space varying coefficients," European Journal of Operational Research, Elsevier, vol. 287(2), pages 749-761.
    10. Leow, Mindy & Crook, Jonathan, 2014. "Intensity models and transition probabilities for credit card loan delinquencies," European Journal of Operational Research, Elsevier, vol. 236(2), pages 685-694.
    11. Djeundje, Viani Biatat & Crook, Jonathan, 2019. "Dynamic survival models with varying coefficients for credit risks," European Journal of Operational Research, Elsevier, vol. 275(1), pages 319-333.
    12. Mark Thackham & Jun Ma, 2020. "On maximum likelihood estimation of the semi-parametric Cox model with time-varying covariates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(9), pages 1511-1528, June.
    13. T Bellotti & J Crook, 2009. "Credit scoring with macroeconomic variables using survival analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1699-1707, December.
    14. Miran A. Jaffa & Robert F. Woolson & Stuart R. Lipsitz, 2011. "Slope estimation for bivariate longitudinal outcomes adjusting for informative right censoring by using a discrete survival model: application to the renal transplant cohort," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 387-402, April.
    15. M Malik & L C Thomas, 2010. "Modelling credit risk of portfolio of consumer loans," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 411-420, March.
    16. Lore Dirick & Tony Bellotti & Gerda Claeskens & Bart Baesens, 2019. "Macro-Economic Factors in Credit Risk Calculations: Including Time-Varying Covariates in Mixture Cure Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 40-53, January.
    17. Hans C. Van Houwelingen, 2007. "Dynamic Prediction by Landmarking in Event History Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(1), pages 70-85, March.
    18. Luong, Thi Mai & Scheule, Harald, 2022. "Benchmarking forecast approaches for mortgage credit risk for forward periods," European Journal of Operational Research, Elsevier, vol. 299(2), pages 750-767.
    19. Maria Stepanova & Lyn Thomas, 2002. "Survival Analysis Methods for Personal Loan Data," Operations Research, INFORMS, vol. 50(2), pages 277-289, April.
    20. Leow, Mindy & Crook, Jonathan, 2016. "The stability of survival model parameter estimates for predicting the probability of default: Empirical evidence over the credit crisis," European Journal of Operational Research, Elsevier, vol. 249(2), pages 457-464.
    21. Bellotti, Tony & Crook, Jonathan, 2013. "Forecasting and stress testing credit card default using dynamic models," International Journal of Forecasting, Elsevier, vol. 29(4), pages 563-574.
    22. Divino, Jose Angelo & Rocha, Líneke Clementino Sleegers, 2013. "Probability of default in collateralized credit operations," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 276-292.
    23. Dimitris Rizopoulos & Laura A. Hatfield & Bradley P. Carlin & Johanna J. M. Takkenberg, 2014. "Combining Dynamic Predictions From Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1385-1397, December.
    24. Jonathan Crook & Tony Bellotti, 2010. "Time varying and dynamic models for default risk in consumer loans," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 283-305, April.
    25. Djeundje, Viani Biatat & Crook, Jonathan, 2018. "Incorporating heterogeneity and macroeconomic variables into multi-state delinquency models for credit cards," European Journal of Operational Research, Elsevier, vol. 271(2), pages 697-709.
    26. Jessica Barrett & Peter Diggle & Robin Henderson & David Taylor-Robinson, 2015. "Joint modelling of repeated measurements and time-to-event outcomes: flexible model specification and exact likelihood inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 131-148, January.
    27. Wenbin Hu & Junzi Zhou, 2019. "Joint modeling: an application in behavioural scoring," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(7), pages 1129-1139, July.
    28. Rizopoulos, Dimitris, 2010. "JM: An R Package for the Joint Modelling of Longitudinal and Time-to-Event Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i09).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calabrese, Raffaella & Dombrowski, Timothy & Mandel, Antoine & Pace, R. Kelley & Zanin, Luca, 2024. "Impacts of extreme weather events on mortgage risks and their evolution under climate change: A case study on Florida," European Journal of Operational Research, Elsevier, vol. 314(1), pages 377-392.
    2. Yang, Fan & Abedin, Mohammad Zoynul & Hajek, Petr, 2024. "An explainable federated learning and blockchain-based secure credit modeling method," European Journal of Operational Research, Elsevier, vol. 317(2), pages 449-467.
    3. Victor Medina-Olivares & Finn Lindgren & Raffaella Calabrese & Jonathan Crook, 2023. "Joint model for longitudinal and spatio-temporal survival data," Papers 2311.04008, arXiv.org.
    4. Zanin, Luca & Calabrese, Raffaella & Thorburn, Connor Innes, 2024. "Climate stress testing for mortgage default probability," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    5. Cedric H. A. Koffi & Viani Biatat Djeundje & Olivier Menoukeu Pamen, 2024. "Impact of social factors on loan delinquency in microfinance," Papers 2410.13100, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Medina-Olivares, Victor & Lindgren, Finn & Calabrese, Raffaella & Crook, Jonathan, 2023. "Joint models of multivariate longitudinal outcomes and discrete survival data with INLA: An application to credit repayment behaviour," European Journal of Operational Research, Elsevier, vol. 310(2), pages 860-873.
    2. Victor Medina-Olivares & Finn Lindgren & Raffaella Calabrese & Jonathan Crook, 2023. "Joint model for longitudinal and spatio-temporal survival data," Papers 2311.04008, arXiv.org.
    3. Bocchio, Cecilia & Crook, Jonathan & Andreeva, Galina, 2023. "The impact of macroeconomic scenarios on recurrent delinquency: A stress testing framework of multi-state models for mortgages," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1655-1677.
    4. Djeundje, Viani Biatat & Crook, Jonathan, 2019. "Dynamic survival models with varying coefficients for credit risks," European Journal of Operational Research, Elsevier, vol. 275(1), pages 319-333.
    5. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    6. Oliver Blümke, 2022. "Multiperiod default probability forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 677-696, July.
    7. Luong, Thi Mai & Scheule, Harald, 2022. "Benchmarking forecast approaches for mortgage credit risk for forward periods," European Journal of Operational Research, Elsevier, vol. 299(2), pages 750-767.
    8. Medina-Olivares, Victor & Calabrese, Raffaella & Dong, Yizhe & Shi, Baofeng, 2022. "Spatial dependence in microfinance credit default," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1071-1085.
    9. Lore Dirick & Gerda Claeskens & Bart Baesens, 2017. "Time to default in credit scoring using survival analysis: a benchmark study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 652-665, June.
    10. Arno Botha & Tanja Verster & Roelinde Bester, 2024. "The TruEnd-procedure: Treating trailing zero-valued balances in credit data," Papers 2404.17008, arXiv.org, revised Nov 2024.
    11. Alexandre, Michel & Antônio Silva Brito, Giovani & Cotrim Martins, Theo, 2017. "Default contagion among credit modalities: evidence from Brazilian data," MPRA Paper 76859, University Library of Munich, Germany.
    12. Dirick, Lore & Claeskens, Gerda & Vasnev, Andrey & Baesens, Bart, 2022. "A hierarchical mixture cure model with unobserved heterogeneity for credit risk," Econometrics and Statistics, Elsevier, vol. 22(C), pages 39-55.
    13. Djeundje, Viani Biatat & Crook, Jonathan, 2018. "Incorporating heterogeneity and macroeconomic variables into multi-state delinquency models for credit cards," European Journal of Operational Research, Elsevier, vol. 271(2), pages 697-709.
    14. Calabrese, Raffaella & Crook, Jonathan, 2020. "Spatial contagion in mortgage defaults: A spatial dynamic survival model with time and space varying coefficients," European Journal of Operational Research, Elsevier, vol. 287(2), pages 749-761.
    15. Joseph L. Breeden, 2024. "An Age–Period–Cohort Framework for Profit and Profit Volatility Modeling," Mathematics, MDPI, vol. 12(10), pages 1-23, May.
    16. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    17. Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
    18. Jiang, Cuiqing & Wang, Zhao & Zhao, Huimin, 2019. "A prediction-driven mixture cure model and its application in credit scoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 20-31.
    19. Thi Mai Luong, 2020. "Selection Effects of Lender and Borrower Choices on Risk Measurement, Management and Prudential Regulation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2020, January-A.
    20. Chrysovalantis Gaganis & Panagiota Papadimitri & Fotios Pasiouras & Menelaos Tasiou, 2023. "Social traits and credit card default: a two-stage prediction framework," Annals of Operations Research, Springer, vol. 325(2), pages 1231-1253, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:307:y:2023:i:3:p:1457-1473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.