IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/76859.html
   My bibliography  Save this paper

Default contagion among credit modalities: evidence from Brazilian data

Author

Listed:
  • Alexandre, Michel
  • Antônio Silva Brito, Giovani
  • Cotrim Martins, Theo

Abstract

The aim of this paper is to assess the impact of the default of some personal credit modality in the future default of the other modalities. Using Brazilian microdata, we run a logistic regression to estimate the probability of default in a given credit modality, including among the explanatory variables the personal overdue exposure in the other credit modalities. Our results show that such effect is positive and significant, although quantitatively heterogeneous. We also discuss the rationale behind these results. Specifically, it was found that financing credit modalities (vehicle and real estate financing) contaminate more the other credit modalities, as their default may bring to the debtor the loss of the financed good. Moreover, riskier loan categories (overdraft, non-payroll-deducted personal credit and credit card) are more contaminated by the default of other modalities, what is explained by the fact that defaulted individuals have a limited access to less risky credit modalities.

Suggested Citation

  • Alexandre, Michel & Antônio Silva Brito, Giovani & Cotrim Martins, Theo, 2017. "Default contagion among credit modalities: evidence from Brazilian data," MPRA Paper 76859, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:76859
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/76859/1/MPRA_paper_76859.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. T Bellotti & J Crook, 2009. "Credit scoring with macroeconomic variables using survival analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1699-1707, December.
    2. Leow, Mindy & Crook, Jonathan, 2016. "The stability of survival model parameter estimates for predicting the probability of default: Empirical evidence over the credit crisis," European Journal of Operational Research, Elsevier, vol. 249(2), pages 457-464.
    3. Jarrow, Robert A. & Turnbull, Stuart M., 2000. "The intersection of market and credit risk," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 271-299, January.
    4. Correa, Arnildo & Marins, Jaqueline & Neves, Myrian & da Silva, Antonio Carlos, 2014. "Credit Default and Business Cycles: An Empirical Investigation of Brazilian Retail Loans," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 68(3), September.
    5. Maria Stepanova & Lyn Thomas, 2002. "Survival Analysis Methods for Personal Loan Data," Operations Research, INFORMS, vol. 50(2), pages 277-289, April.
    6. repec:fgv:epgrbe:v:68:n:3:a:3 is not listed on IDEAS
    7. Tony Bellotti & Jonathan Crook, 2014. "Retail credit stress testing using a discrete hazard model with macroeconomic factors," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 340-350, March.
    8. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn C., 2012. "Mixture cure models in credit scoring: If and when borrowers default," European Journal of Operational Research, Elsevier, vol. 218(1), pages 132-139.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lore Dirick & Gerda Claeskens & Bart Baesens, 2017. "Time to default in credit scoring using survival analysis: a benchmark study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 652-665, June.
    2. Calabrese, Raffaella & Crook, Jonathan, 2020. "Spatial contagion in mortgage defaults: A spatial dynamic survival model with time and space varying coefficients," European Journal of Operational Research, Elsevier, vol. 287(2), pages 749-761.
    3. Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
    4. Joseph L. Breeden, 2024. "An Age–Period–Cohort Framework for Profit and Profit Volatility Modeling," Mathematics, MDPI, vol. 12(10), pages 1-23, May.
    5. Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
    6. Liu, Fan & Hua, Zhongsheng & Lim, Andrew, 2015. "Identifying future defaulters: A hierarchical Bayesian method," European Journal of Operational Research, Elsevier, vol. 241(1), pages 202-211.
    7. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    8. Arno Botha & Tanja Verster & Roelinde Bester, 2024. "The TruEnd-procedure: Treating trailing zero-valued balances in credit data," Papers 2404.17008, arXiv.org, revised Nov 2024.
    9. Dirick, Lore & Claeskens, Gerda & Vasnev, Andrey & Baesens, Bart, 2022. "A hierarchical mixture cure model with unobserved heterogeneity for credit risk," Econometrics and Statistics, Elsevier, vol. 22(C), pages 39-55.
    10. Dirick, Lore & Claeskens, Gerda & Baesens, Bart, 2015. "An Akaike information criterion for multiple event mixture cure models," European Journal of Operational Research, Elsevier, vol. 241(2), pages 449-457.
    11. Jiang, Cuiqing & Wang, Zhao & Zhao, Huimin, 2019. "A prediction-driven mixture cure model and its application in credit scoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 20-31.
    12. Thi Mai Luong, 2020. "Selection Effects of Lender and Borrower Choices on Risk Measurement, Management and Prudential Regulation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2020, January-A.
    13. Djeundje, Viani Biatat & Crook, Jonathan, 2019. "Dynamic survival models with varying coefficients for credit risks," European Journal of Operational Research, Elsevier, vol. 275(1), pages 319-333.
    14. Oliver Blümke, 2022. "Multiperiod default probability forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 677-696, July.
    15. Medina-Olivares, Victor & Lindgren, Finn & Calabrese, Raffaella & Crook, Jonathan, 2023. "Joint models of multivariate longitudinal outcomes and discrete survival data with INLA: An application to credit repayment behaviour," European Journal of Operational Research, Elsevier, vol. 310(2), pages 860-873.
    16. Michal Rychnovský, 2018. "Survival Analysis As A Tool For Better Probability Of Default Prediction," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2018(1), pages 34-46.
    17. Richard Chamboko & Jorge M. Bravo, 2016. "On the modelling of prognosis from delinquency to normal performance on retail consumer loans," Risk Management, Palgrave Macmillan, vol. 18(4), pages 264-287, December.
    18. Zhao Wang & Cuiqing Jiang & Huimin Zhao, 2022. "Know Where to Invest: Platform Risk Evaluation in Online Lending," Information Systems Research, INFORMS, vol. 33(3), pages 765-783, September.
    19. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn C., 2012. "Mixture cure models in credit scoring: If and when borrowers default," European Journal of Operational Research, Elsevier, vol. 218(1), pages 132-139.
    20. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.

    More about this item

    Keywords

    Credit default contagion; debtor approach; transaction approach;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:76859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.