IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.15441.html
   My bibliography  Save this paper

Approaches for modelling the term-structure of default risk under IFRS 9: A tutorial using discrete-time survival analysis

Author

Listed:
  • Arno Botha
  • Tanja Verster

Abstract

Under the International Financial Reporting Standards (IFRS) 9, credit losses ought to be recognised timeously and accurately. This requirement belies a certain degree of dynamicity when estimating the constituent parts of a credit loss event, most notably the probability of default (PD). It is notoriously difficult to produce such PD-estimates at every point of loan life that are adequately dynamic and accurate, especially when considering the ever-changing macroeconomic background. In rendering these lifetime PD-estimates, the choice of modelling technique plays an important role, which is why we first review a few classes of techniques, including the merits and limitations of each. Our main contribution however is the development of an in-depth and data-driven tutorial using a particular class of techniques called discrete-time survival analysis. This tutorial is accompanied by a diverse set of reusable diagnostic measures for evaluating various aspects of a survival model and the underlying data. A comprehensive R-based codebase is further contributed. We believe that our work can help cultivate common modelling practices under IFRS 9, and should be valuable to practitioners, model validators, and regulators alike.

Suggested Citation

  • Arno Botha & Tanja Verster, 2025. "Approaches for modelling the term-structure of default risk under IFRS 9: A tutorial using discrete-time survival analysis," Papers 2507.15441, arXiv.org.
  • Handle: RePEc:arx:papers:2507.15441
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.15441
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.15441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.