IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.01044.html
   My bibliography  Save this paper

Towards modelling lifetime default risk: Exploring different subtypes of recurrent event Cox-regression models

Author

Listed:
  • Arno Botha
  • Tanja Verster
  • Bernard Scheepers

Abstract

In the pursuit of modelling a loan's probability of default (PD) over its lifetime, repeat default events are often ignored when using Cox Proportional Hazard (PH) models. Excluding such events may produce biased and inaccurate PD-estimates, which can compromise financial buffers against future losses. Accordingly, we investigate a few subtypes of Cox-models that can incorporate recurrent default events. Using South African mortgage data, we explore both the Andersen-Gill (AG) and the Prentice-Williams-Peterson (PWP) spell-time models. These models are compared against a baseline that deliberately ignores recurrent events, called the time to first default (TFD) model. Models are evaluated using Harrell's c-statistic, adjusted Cox-Sell residuals, and a novel extension of time-dependent receiver operating characteristic (ROC) analysis. From these Cox-models, we demonstrate how to derive a portfolio-level term-structure of default risk, which is a series of marginal PD-estimates at each point of the average loan's lifetime. While the TFD- and PWP-models do not differ significantly across all diagnostics, the AG-model underperformed expectations. Depending on the prevalence of recurrent defaults, one may therefore safely ignore them when estimating lifetime default risk. Accordingly, our work enhances the current practice of using Cox-modelling in producing timeous and accurate PD-estimates under IFRS 9.

Suggested Citation

  • Arno Botha & Tanja Verster & Bernard Scheepers, 2025. "Towards modelling lifetime default risk: Exploring different subtypes of recurrent event Cox-regression models," Papers 2505.01044, arXiv.org.
  • Handle: RePEc:arx:papers:2505.01044
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.01044
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arno Botha & Conrad Beyers & Pieter de Villiers, 2020. "Simulation-based optimisation of the timing of loan recovery across different portfolios," Papers 2009.11064, arXiv.org, revised Apr 2021.
    2. Aasthaa Bansal & Patrick J. Heagerty, 2018. "A Tutorial on Evaluating the Time-Varying Discrimination Accuracy of Survival Models Used in Dynamic Decision Making," Medical Decision Making, , vol. 38(8), pages 904-916, November.
    3. Mithat Gonen & Glenn Heller, 2005. "Concordance probability and discriminatory power in proportional hazards regression," Biometrika, Biometrika Trust, vol. 92(4), pages 965-970, December.
    4. Maria Stepanova & Lyn Thomas, 2002. "Survival Analysis Methods for Personal Loan Data," Operations Research, INFORMS, vol. 50(2), pages 277-289, April.
    5. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
    6. Douw Gerbrand Breed & Niel van Jaarsveld & Carsten Gerken & Tanja Verster & Helgard Raubenheimer, 2021. "Development of an Impairment Point in Time Probability of Default Model for Revolving Retail Credit Products: South African Case Study," Risks, MDPI, vol. 9(11), pages 1-22, November.
    7. Richard Chamboko & Jorge M. Bravo, 2016. "On the modelling of prognosis from delinquency to normal performance on retail consumer loans," Risk Management, Palgrave Macmillan, vol. 18(4), pages 264-287, December.
    8. Bellotti, Tony & Crook, Jonathan, 2013. "Forecasting and stress testing credit card default using dynamic models," International Journal of Forecasting, Elsevier, vol. 29(4), pages 563-574.
    9. Tony Bellotti & Jonathan Crook, 2014. "Retail credit stress testing using a discrete hazard model with macroeconomic factors," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 340-350, March.
    10. Jonathan Crook & Tony Bellotti, 2010. "Time varying and dynamic models for default risk in consumer loans," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 283-305, April.
    11. Lore Dirick & Gerda Claeskens & Bart Baesens, 2017. "Time to default in credit scoring using survival analysis: a benchmark study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 652-665, June.
    12. Thomas, Lyn C., 2009. "Consumer Credit Models: Pricing, Profit and Portfolios," OUP Catalogue, Oxford University Press, number 9780199232130, Decembrie.
    13. Arno Botha & Tanja Verster & Roelinde Bester, 2024. "The TruEnd-procedure: Treating trailing zero-valued balances in credit data," Papers 2404.17008, arXiv.org, revised Mar 2025.
    14. Skoglund, Jimmy, 2017. "Credit risk term-structures for lifetime impairment forecasting: A practical guide," Journal of Risk Management in Financial Institutions, Henry Stewart Publications, vol. 10(2), pages 177-195, April.
    15. Arno Botha & Tanja Verster & Roland Breedt, 2025. "Modelling the term-structure of default risk under IFRS 9 within a multistate regression framework," Papers 2502.14479, arXiv.org, revised May 2025.
    16. T Bellotti & J Crook, 2009. "Credit scoring with macroeconomic variables using survival analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1699-1707, December.
    17. Patrick J. Heagerty & Thomas Lumley & Margaret S. Pepe, 2000. "Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker," Biometrics, The International Biometric Society, vol. 56(2), pages 337-344, June.
    18. Mingfeng Lin & Henry C. Lucas & Galit Shmueli, 2013. "Research Commentary ---Too Big to Fail: Large Samples and the p -Value Problem," Information Systems Research, INFORMS, vol. 24(4), pages 906-917, December.
    19. J Banasik & J N Crook & L C Thomas, 1999. "Not if but when will borrowers default," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(12), pages 1185-1190, December.
    20. Yan-Shing Chen & Po-Hsin Ho & Chih-Yung Lin & Wei-Che Tsai, 2012. "Applying recurrent event analysis to understand the causes of changes in firm credit ratings," Applied Financial Economics, Taylor & Francis Journals, vol. 22(12), pages 977-988, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arno Botha & Tanja Verster & Roelinde Bester, 2024. "The TruEnd-procedure: Treating trailing zero-valued balances in credit data," Papers 2404.17008, arXiv.org, revised Mar 2025.
    2. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    3. Djeundje, Viani Biatat & Crook, Jonathan, 2019. "Dynamic survival models with varying coefficients for credit risks," European Journal of Operational Research, Elsevier, vol. 275(1), pages 319-333.
    4. Oliver Blümke, 2022. "Multiperiod default probability forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 677-696, July.
    5. Arno Botha & Esmerelda Oberholzer & Janette Larney & Riaan de Jongh, 2023. "Defining and comparing SICR-events for classifying impaired loans under IFRS 9," Papers 2303.03080, arXiv.org, revised Feb 2025.
    6. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    7. Lore Dirick & Gerda Claeskens & Bart Baesens, 2017. "Time to default in credit scoring using survival analysis: a benchmark study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 652-665, June.
    8. Richard Chamboko & Jorge Miguel Bravo, 2020. "A Multi-State Approach to Modelling Intermediate Events and Multiple Mortgage Loan Outcomes," Risks, MDPI, vol. 8(2), pages 1-29, June.
    9. Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
    10. Dirick, Lore & Claeskens, Gerda & Vasnev, Andrey & Baesens, Bart, 2022. "A hierarchical mixture cure model with unobserved heterogeneity for credit risk," Econometrics and Statistics, Elsevier, vol. 22(C), pages 39-55.
    11. Richard Chamboko & Jorge M. Bravo, 2016. "On the modelling of prognosis from delinquency to normal performance on retail consumer loans," Risk Management, Palgrave Macmillan, vol. 18(4), pages 264-287, December.
    12. Djeundje, Viani Biatat & Crook, Jonathan, 2018. "Incorporating heterogeneity and macroeconomic variables into multi-state delinquency models for credit cards," European Journal of Operational Research, Elsevier, vol. 271(2), pages 697-709.
    13. Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
    14. Jiang, Cuiqing & Wang, Zhao & Zhao, Huimin, 2019. "A prediction-driven mixture cure model and its application in credit scoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 20-31.
    15. Thi Mai Luong, 2020. "Selection Effects of Lender and Borrower Choices on Risk Measurement, Management and Prudential Regulation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2020, January-A.
    16. Bocchio, Cecilia & Crook, Jonathan & Andreeva, Galina, 2023. "The impact of macroeconomic scenarios on recurrent delinquency: A stress testing framework of multi-state models for mortgages," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1655-1677.
    17. Liu, Fan & Hua, Zhongsheng & Lim, Andrew, 2015. "Identifying future defaulters: A hierarchical Bayesian method," European Journal of Operational Research, Elsevier, vol. 241(1), pages 202-211.
    18. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn C., 2012. "Mixture cure models in credit scoring: If and when borrowers default," European Journal of Operational Research, Elsevier, vol. 218(1), pages 132-139.
    19. Sanchez-Barrios, Luis Javier & Andreeva, Galina & Ansell, Jake, 2016. "“Time-to-profit scorecards for revolving credit”," European Journal of Operational Research, Elsevier, vol. 249(2), pages 397-406.
    20. Luo, Sirong & Kong, Xiao & Nie, Tingting, 2016. "Spline based survival model for credit risk modeling," European Journal of Operational Research, Elsevier, vol. 253(3), pages 869-879.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.01044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.