IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v297y2022i1p102-119.html
   My bibliography  Save this article

Stackelberg production-protection games: Defending crop production against intentional attacks

Author

Listed:
  • Musegaas, Marieke
  • Schlicher, Loe
  • Blok, Herman

Abstract

Inspired by recent terrorist attacks on cereal production fields in Iraq, we introduce and study two types of Stackelberg games. In these games, the leader wants to maximize its production (e.g., cereal), while the follower tries to destroy this production as much as possible. In the first model, the leader can protect its production by spreading his production resources over multiple regions. In the second model, the leader can also decide to allocate some extra protection resources to the regions. For both games, we are interested in a follower’s and leader’s optimal strategy. We characterise optimal strategies for the follower and present two linear time algorithms (one for each game) that find an optimal strategy for the leader.

Suggested Citation

  • Musegaas, Marieke & Schlicher, Loe & Blok, Herman, 2022. "Stackelberg production-protection games: Defending crop production against intentional attacks," European Journal of Operational Research, Elsevier, vol. 297(1), pages 102-119.
  • Handle: RePEc:eee:ejores:v:297:y:2022:i:1:p:102-119
    DOI: 10.1016/j.ejor.2021.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721003246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guikema, Seth D. & Aven, Terje, 2010. "Assessing risk from intelligent attacks: A perspective on approaches," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 478-483.
    2. Patterson, S.A. & Apostolakis, G.E., 2007. "Identification of critical locations across multiple infrastructures for terrorist actions," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1183-1203.
    3. Levitin, Gregory & Hausken, Kjell, 2009. "Meeting a demand vs. enhancing protections in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1711-1717.
    4. Patrick T. Brandt & Todd Sandler, 2010. "What Do Transnational Terrorists Target? Has It Changed? Are We Safer?," Journal of Conflict Resolution, Peace Science Society (International), vol. 54(2), pages 214-236, April.
    5. Vicki Bier & Santiago Oliveros & Larry Samuelson, 2007. "Choosing What to Protect: Strategic Defensive Allocation against an Unknown Attacker," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 9(4), pages 563-587, August.
    6. Scaparra, Maria P. & Church, Richard L., 2008. "An exact solution approach for the interdiction median problem with fortification," European Journal of Operational Research, Elsevier, vol. 189(1), pages 76-92, August.
    7. Jiang, J. & Liu, X., 2018. "Multi-objective Stackelberg game model for water supply networks against interdictions with incomplete information," European Journal of Operational Research, Elsevier, vol. 266(3), pages 920-933.
    8. Paola Cappanera & Maria Paola Scaparra, 2011. "Optimal Allocation of Protective Resources in Shortest-Path Networks," Transportation Science, INFORMS, vol. 45(1), pages 64-80, February.
    9. Hirshleifer, Jack, 1995. "Anarchy and Its Breakdown," Journal of Political Economy, University of Chicago Press, vol. 103(1), pages 26-52, February.
    10. Naraphorn Haphuriwat & Vicki M. Bier & Henry H. Willis, 2011. "Deterring the Smuggling of Nuclear Weapons in Container Freight Through Detection and Retaliation," Decision Analysis, INFORMS, vol. 8(2), pages 88-102, June.
    11. Alan Washburn & Kevin Wood, 1995. "Two-Person Zero-Sum Games for Network Interdiction," Operations Research, INFORMS, vol. 43(2), pages 243-251, April.
    12. Powell, Robert, 2009. "Sequential, nonzero-sum "Blotto": Allocating defensive resources prior to attack," Games and Economic Behavior, Elsevier, vol. 67(2), pages 611-615, November.
    13. H. Rosoff & D. Von Winterfeldt, 2007. "A Risk and Economic Analysis of Dirty Bomb Attacks on the Ports of Los Angeles and Long Beach," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 533-546, June.
    14. Starita, Stefano & Scaparra, Maria Paola, 2016. "Optimizing dynamic investment decisions for railway systems protection," European Journal of Operational Research, Elsevier, vol. 248(2), pages 543-557.
    15. Jun Zhuang & Vicki Bier, 2011. "Secrecy And Deception At Equilibrium, With Applications To Anti-Terrorism Resource Allocation," Defence and Peace Economics, Taylor & Francis Journals, vol. 22(1), pages 43-61.
    16. Vicki Bier & Naraphorn Haphuriwat, 2011. "Analytical method to identify the number of containers to inspect at U.S. ports to deter terrorist attacks," Annals of Operations Research, Springer, vol. 187(1), pages 137-158, July.
    17. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.
    18. Levitin, Gregory & Hausken, Kjell, 2010. "Separation in homogeneous systems with independent identical elements," European Journal of Operational Research, Elsevier, vol. 203(3), pages 625-634, June.
    19. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    20. Shan, Xiaojun & Zhuang, Jun, 2013. "Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender–attacker game," European Journal of Operational Research, Elsevier, vol. 228(1), pages 262-272.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramirez-Marquez, José Emmanuel & Li, Qing, 2018. "Locating and protecting facilities from intentional attacks using secrecyAuthor-Name: Zhang, Chi," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 51-62.
    2. Bier, Vicki M. & Kosanoglu, Fuat, 2015. "Target-oriented utility theory for modeling the deterrent effects of counterterrorism," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 35-46.
    3. Bier, Vicki M. & Hausken, Kjell, 2013. "Defending and attacking a network of two arcs subject to traffic congestion," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 214-224.
    4. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    5. Jie Xu & Jun Zhuang, 2016. "Modeling costly learning and counter-learning in a defender-attacker game with private defender information," Annals of Operations Research, Springer, vol. 236(1), pages 271-289, January.
    6. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    7. Zhang, Jing & Zhuang, Jun & Jose, Victor Richmond R., 2018. "The role of risk preferences in a multi-target defender-attacker resource allocation game," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 95-104.
    8. Leitner, Markus & Ljubić, Ivana & Monaci, Michele & Sinnl, Markus & Tanınmış, Kübra, 2023. "An exact method for binary fortification games," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1026-1039.
    9. Kjell Hausken, 2014. "Choosing what to protect when attacker resources and asset valuations are uncertain," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 24(3), pages 23-44.
    10. Talarico, Luca & Reniers, Genserik & Sörensen, Kenneth & Springael, Johan, 2015. "MISTRAL: A game-theoretical model to allocate security measures in a multi-modal chemical transportation network with adaptive adversaries," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 105-114.
    11. Levitin, Gregory & Hausken, Kjell, 2009. "Intelligence and impact contests in systems with redundancy, false targets, and partial protection," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1927-1941.
    12. Peiqiu Guan & Jun Zhuang, 2016. "Modeling Resources Allocation in Attacker‐Defender Games with “Warm Up” CSF," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 776-791, April.
    13. Levitin, Gregory & Hausken, Kjell, 2011. "Preventive strike vs. false targets and protection in defense strategy," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 912-924.
    14. Bakker, Craig & Webster, Jennifer B. & Nowak, Kathleen E. & Chatterjee, Samrat & Perkins, Casey J. & Brigantic, Robert, 2020. "Multi-Game Modeling for Counter-Smuggling," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    15. Grant, Matthew J. & Stewart, Mark G., 2017. "Modelling improvised explosive device attacks in the West – Assessing the hazard," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 345-354.
    16. Dan Kovenock & Brian Roberson, 2012. "Strategic Defense And Attack For Series And Parallel Reliability Systems: Comment," Defence and Peace Economics, Taylor & Francis Journals, vol. 23(5), pages 507-515, October.
    17. Kjell Hausken & Fei He, 2016. "On the Effectiveness of Security Countermeasures for Critical Infrastructures," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 711-726, April.
    18. Wei Wang & Francesco Di Maio & Enrico Zio, 2019. "Adversarial Risk Analysis to Allocate Optimal Defense Resources for Protecting Cyber–Physical Systems from Cyber Attacks," Risk Analysis, John Wiley & Sons, vol. 39(12), pages 2766-2785, December.
    19. Fang, Yiping & Sansavini, Giovanni, 2017. "Optimizing power system investments and resilience against attacks," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 161-173.
    20. Ouyang, Min & Xu, Min & Zhang, Chi & Huang, Shitong, 2017. "Mitigating electric power system vulnerability to worst-case spatially localized attacks," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 144-154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:297:y:2022:i:1:p:102-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.