IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v31y2019i2p390-410.html
   My bibliography  Save this article

Interdiction Games and Monotonicity, with Application to Knapsack Problems

Author

Listed:
  • Matteo Fischetti

    (Department of Information Engineering, University of Padua, 351200 Padua PD, Italy)

  • Ivana Ljubić

    (ESSEC Business School Paris, 95021 Cergy Pontoise, France)

  • Michele Monaci

    (Department of Information Engineering, University of Bologna, 40136 Bologna, Italy)

  • Markus Sinnl

    (Department of Statistics and Operations Research, University of Vienna, 1090 Vienna, Austria)

Abstract

Two-person interdiction games represent an important modeling concept for applications in marketing, defending critical infrastructure, stopping nuclear weapons projects, or preventing drug smuggling. We present an exact branch-and-cut algorithm for interdiction games under the assumption that feasible solutions of the follower problem satisfy a certain monotonicity property. Prominent examples from the literature that fall into this category are knapsack interdiction, matching interdiction, and packing interdiction problems. We also show how practically relevant interdiction variants of facility location and prize-collecting problems can be modeled in our setting. Our branch-and-cut algorithm uses a solution scheme akin to Benders decomposition based on a family of so-called interdiction cuts. We present modified and lifted versions of these cuts along with exact and heuristic procedures for the separation of interdiction cuts and heuristic separation procedures for the other versions. In addition, we derive further valid inequalities and present a new heuristic procedure. We computationally evaluate the proposed algorithm on a benchmark of 360 knapsack interdiction instances from literature, including 27 instances for which the optimal solution was not known. Our approach is able to solve each of them to optimality within about one minute of computing time on a standard PC (in most cases, within just seconds), and it is up to some orders of magnitude faster than any previous approach from the literature. To further assess the effectiveness of our branch-and-cut algorithm, an additional computational study is performed on 144 randomly generated instances based on 0/1 multidimensional knapsack problems.

Suggested Citation

  • Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.
  • Handle: RePEc:inm:orijoc:v:31:y:2019:i:2:p:390-410
    DOI: 10.1287/ijoc.2018.0831
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2018.0831
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2018.0831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. Martin Weingartner & David N. Ness, 1967. "Methods for the Solution of the Multidimensional 0/1 Knapsack Problem," Operations Research, INFORMS, vol. 15(1), pages 83-103, February.
    2. Clifford C. Petersen, 1967. "Computational Experience with Variants of the Balas Algorithm Applied to the Selection of R&D Projects," Management Science, INFORMS, vol. 13(9), pages 736-750, May.
    3. J. Cole Smith & Churlzu Lim, 2008. "Algorithms for Network Interdiction and Fortification Games," Springer Optimization and Its Applications, in: Altannar Chinchuluun & Panos M. Pardalos & Athanasios Migdalas & Leonidas Pitsoulis (ed.), Pareto Optimality, Game Theory And Equilibria, pages 609-644, Springer.
    4. Shizuo Senju & Yoshiaki Toyoda, 1968. "An Approach to Linear Programming with 0-1 Variables," Management Science, INFORMS, vol. 15(4), pages 196-207, December.
    5. Alan Washburn & Kevin Wood, 1995. "Two-Person Zero-Sum Games for Network Interdiction," Operations Research, INFORMS, vol. 43(2), pages 243-251, April.
    6. Leonardo Lozano & J. Cole Smith, 2017. "A Value-Function-Based Exact Approach for the Bilevel Mixed-Integer Programming Problem," Operations Research, INFORMS, vol. 65(3), pages 768-786, June.
    7. Alberto Caprara & Margarida Carvalho & Andrea Lodi & Gerhard J. Woeginger, 2016. "Bilevel Knapsack with Interdiction Constraints," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 319-333, May.
    8. Gerald Brown & Matthew Carlyle & Javier Salmerón & Kevin Wood, 2006. "Defending Critical Infrastructure," Interfaces, INFORMS, vol. 36(6), pages 530-544, December.
    9. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    10. Kelly J. Cormican & David P. Morton & R. Kevin Wood, 1998. "Stochastic Network Interdiction," Operations Research, INFORMS, vol. 46(2), pages 184-197, April.
    11. Yongjia Song & Siqian Shen, 2016. "Risk-Averse Shortest Path Interdiction," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 527-539, August.
    12. James T. Moore & Jonathan F. Bard, 1990. "The Mixed Integer Linear Bilevel Programming Problem," Operations Research, INFORMS, vol. 38(5), pages 911-921, October.
    13. Silvano Martello & David Pisinger & Paolo Toth, 1999. "Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem," Management Science, INFORMS, vol. 45(3), pages 414-424, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tanınmış, Kübra & Aras, Necati & Altınel, İ. Kuban, 2022. "Improved x-space algorithm for min-max bilevel problems with an application to misinformation spread in social networks," European Journal of Operational Research, Elsevier, vol. 297(1), pages 40-52.
    2. Gabriele Dragotto & Amine Boukhtouta & Andrea Lodi & Mehdi Taobane, 2024. "The critical node game," Journal of Combinatorial Optimization, Springer, vol. 47(5), pages 1-20, July.
    3. Kosmas, Daniel & Sharkey, Thomas C. & Mitchell, John E. & Maass, Kayse Lee & Martin, Lauren, 2023. "Interdicting restructuring networks with applications in illicit trafficking," European Journal of Operational Research, Elsevier, vol. 308(2), pages 832-851.
    4. Cerulli, Martina & Serra, Domenico & Sorgente, Carmine & Archetti, Claudia & Ljubić, Ivana, 2023. "Mathematical programming formulations for the Collapsed k-Core Problem," European Journal of Operational Research, Elsevier, vol. 311(1), pages 56-72.
    5. Thomas Kleinert & Martin Schmidt, 2023. "Why there is no need to use a big-M in linear bilevel optimization: a computational study of two ready-to-use approaches," Computational Management Science, Springer, vol. 20(1), pages 1-12, December.
    6. Martin B. Haugh & Chun Wang, 2022. "Play Like the Pros? Solving the Game of Darts as a Dynamic Zero-Sum Game," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2540-2551, September.
    7. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    8. Pferschy, Ulrich & Nicosia, Gaia & Pacifici, Andrea & Schauer, Joachim, 2021. "On the Stackelberg knapsack game," European Journal of Operational Research, Elsevier, vol. 291(1), pages 18-31.
    9. Leitner, Markus & Ljubić, Ivana & Monaci, Michele & Sinnl, Markus & Tanınmış, Kübra, 2023. "An exact method for binary fortification games," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1026-1039.
    10. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    11. Musegaas, Marieke & Schlicher, Loe & Blok, Herman, 2022. "Stackelberg production-protection games: Defending crop production against intentional attacks," European Journal of Operational Research, Elsevier, vol. 297(1), pages 102-119.
    12. Casorrán, Carlos & Fortz, Bernard & Labbé, Martine & Ordóñez, Fernando, 2019. "A study of general and security Stackelberg game formulations," European Journal of Operational Research, Elsevier, vol. 278(3), pages 855-868.
    13. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.
    14. Keskin, Burcu B. & Griffin, Emily C. & Prell, Jonathan O. & Dilkina, Bistra & Ferber, Aaron & MacDonald, John & Hilend, Rowan & Griffis, Stanley & Gore, Meredith L., 2023. "Quantitative Investigation of Wildlife Trafficking Supply Chains: A Review," Omega, Elsevier, vol. 115(C).
    15. Andrea Baggio & Margarida Carvalho & Andrea Lodi & Andrea Tramontani, 2021. "Multilevel Approaches for the Critical Node Problem," Operations Research, INFORMS, vol. 69(2), pages 486-508, March.
    16. Forbes, M.A. & Harris, M.G. & Jansen, H.M. & van der Schoot, F.A. & Taimre, T., 2024. "Combining optimisation and simulation using logic-based Benders decomposition," European Journal of Operational Research, Elsevier, vol. 312(3), pages 840-854.
    17. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    18. Kübra Tanınmış & Markus Sinnl, 2022. "A Branch-and-Cut Algorithm for Submodular Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2634-2657, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.
    2. Furini, Fabio & Ljubić, Ivana & Martin, Sébastien & San Segundo, Pablo, 2019. "The maximum clique interdiction problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 112-127.
    3. Leonardo Lozano & J. Cole Smith, 2017. "A Backward Sampling Framework for Interdiction Problems with Fortification," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 123-139, February.
    4. Fischetti, Matteo & Monaci, Michele & Sinnl, Markus, 2018. "A dynamic reformulation heuristic for Generalized Interdiction Problems," European Journal of Operational Research, Elsevier, vol. 267(1), pages 40-51.
    5. Leitner, Markus & Ljubić, Ivana & Monaci, Michele & Sinnl, Markus & Tanınmış, Kübra, 2023. "An exact method for binary fortification games," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1026-1039.
    6. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    7. Brian Lunday & Hanif Sherali, 2012. "Network interdiction to minimize the maximum probability of evasion with synergy between applied resources," Annals of Operations Research, Springer, vol. 196(1), pages 411-442, July.
    8. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    9. Juan S. Borrero & Leonardo Lozano, 2021. "Modeling Defender-Attacker Problems as Robust Linear Programs with Mixed-Integer Uncertainty Sets," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1570-1589, October.
    10. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    11. Laan, Corine M. & van der Mijden, Tom & Barros, Ana Isabel & Boucherie, Richard J. & Monsuur, Herman, 2017. "An interdiction game on a queueing network with multiple intruders," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1069-1080.
    12. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    13. Chaya Losada & M. Scaparra & Richard Church & Mark Daskin, 2012. "The stochastic interdiction median problem with disruption intensity levels," Annals of Operations Research, Springer, vol. 201(1), pages 345-365, December.
    14. Yalçın Akçay & Haijun Li & Susan Xu, 2007. "Greedy algorithm for the general multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 150(1), pages 17-29, March.
    15. Kübra Tanınmış & Markus Sinnl, 2022. "A Branch-and-Cut Algorithm for Submodular Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2634-2657, September.
    16. Paola Cappanera & Maria Paola Scaparra, 2011. "Optimal Allocation of Protective Resources in Shortest-Path Networks," Transportation Science, INFORMS, vol. 45(1), pages 64-80, February.
    17. Thomas Kleinert & Martin Schmidt, 2021. "Computing Feasible Points of Bilevel Problems with a Penalty Alternating Direction Method," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 198-215, January.
    18. Parajuli, Anubhuti & Kuzgunkaya, Onur & Vidyarthi, Navneet, 2017. "Responsive contingency planning of capacitated supply networks under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 102(C), pages 13-37.
    19. Ramamoorthy, Prasanna & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2018. "Multiple allocation hub interdiction and protection problems: Model formulations and solution approaches," European Journal of Operational Research, Elsevier, vol. 270(1), pages 230-245.
    20. Liu, Shaonan & Wang, Mingzheng & Kong, Nan & Hu, Xiangpei, 2021. "An enhanced branch-and-bound algorithm for bilevel integer linear programming," European Journal of Operational Research, Elsevier, vol. 291(2), pages 661-679.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:31:y:2019:i:2:p:390-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.