IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v277y2019i1p112-127.html
   My bibliography  Save this article

The maximum clique interdiction problem

Author

Listed:
  • Furini, Fabio
  • Ljubić, Ivana
  • Martin, Sébastien
  • San Segundo, Pablo

Abstract

Given a graph G and an interdiction budget k, the Maximum Clique Interdiction Problem asks to find a subset of at most k vertices to remove from G so that the size of the maximum clique in the remaining graph is minimized. This problem has applications in many areas, such as crime detection, prevention of outbreaks of infectious diseases and surveillance of communication networks. We propose an integer linear programming formulation of the problem based on an exponential family of Clique-Interdiction Cuts and we give necessary and sufficient conditions under which these cuts are facet-defining. Our new approach provides a useful tool for analyzing the resilience of (social) networks with respect to clique-interdiction attacks, i.e., the decrease of the size of the maximum clique as a function of an incremental interdiction budget level. On a benchmark set of publicly available instances, including large-scale social networks with up to one hundred thousand vertices and three million edges, we show that most of them can be analyzed and solved to proven optimality within short computing time.

Suggested Citation

  • Furini, Fabio & Ljubić, Ivana & Martin, Sébastien & San Segundo, Pablo, 2019. "The maximum clique interdiction problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 112-127.
  • Handle: RePEc:eee:ejores:v:277:y:2019:i:1:p:112-127
    DOI: 10.1016/j.ejor.2019.02.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719301572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.02.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vladimir Batagelj & Matjaž Zaveršnik, 2011. "Fast algorithms for determining (generalized) core groups in social networks," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(2), pages 129-145, July.
    2. Kelly J. Cormican & David P. Morton & R. Kevin Wood, 1998. "Stochastic Network Interdiction," Operations Research, INFORMS, vol. 46(2), pages 184-197, April.
    3. Balabhaskar Balasundaram & Sergiy Butenko & Illya V. Hicks, 2011. "Clique Relaxations in Social Network Analysis: The Maximum k -Plex Problem," Operations Research, INFORMS, vol. 59(1), pages 133-142, February.
    4. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2017. "A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs," Operations Research, INFORMS, vol. 65(6), pages 1615-1637, December.
    5. Paola Cappanera & Maria Paola Scaparra, 2011. "Optimal Allocation of Protective Resources in Shortest-Path Networks," Transportation Science, INFORMS, vol. 45(1), pages 64-80, February.
    6. H. Donald Ratliff & G. Thomas Sicilia & S. H. Lubore, 1975. "Finding the n Most Vital Links in Flow Networks," Management Science, INFORMS, vol. 21(5), pages 531-539, January.
    7. Alan Washburn & Kevin Wood, 1995. "Two-Person Zero-Sum Games for Network Interdiction," Operations Research, INFORMS, vol. 43(2), pages 243-251, April.
    8. Yongjia Song & Siqian Shen, 2016. "Risk-Averse Shortest Path Interdiction," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 527-539, August.
    9. Leonardo Lozano & J. Cole Smith, 2017. "A Value-Function-Based Exact Approach for the Bilevel Mixed-Integer Programming Problem," Operations Research, INFORMS, vol. 65(3), pages 768-786, June.
    10. Alberto Caprara & Margarida Carvalho & Andrea Lodi & Gerhard J. Woeginger, 2016. "Bilevel Knapsack with Interdiction Constraints," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 319-333, May.
    11. Lawrence V. Snyder & Zümbül Atan & Peng Peng & Ying Rong & Amanda J. Schmitt & Burcu Sinsoysal, 2016. "OR/MS models for supply chain disruptions: a review," IISE Transactions, Taylor & Francis Journals, vol. 48(2), pages 89-109, February.
    12. Rysz, Maciej & Mahdavi Pajouh, Foad & Pasiliao, Eduardo L., 2018. "Finding clique clusters with the highest betweenness centrality," European Journal of Operational Research, Elsevier, vol. 271(1), pages 155-164.
    13. Pattillo, Jeffrey & Youssef, Nataly & Butenko, Sergiy, 2013. "On clique relaxation models in network analysis," European Journal of Operational Research, Elsevier, vol. 226(1), pages 9-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cerulli, Martina & Serra, Domenico & Sorgente, Carmine & Archetti, Claudia & Ljubić, Ivana, 2023. "Mathematical programming formulations for the Collapsed k-Core Problem," European Journal of Operational Research, Elsevier, vol. 311(1), pages 56-72.
    2. San Segundo, Pablo & Furini, Fabio & León, Rafael, 2022. "A new branch-and-filter exact algorithm for binary constraint satisfaction problems," European Journal of Operational Research, Elsevier, vol. 299(2), pages 448-467.
    3. Wei, Ningji & Walteros, Jose L., 2022. "Integer programming methods for solving binary interdiction games," European Journal of Operational Research, Elsevier, vol. 302(2), pages 456-469.
    4. Leitner, Markus & Ljubić, Ivana & Monaci, Michele & Sinnl, Markus & Tanınmış, Kübra, 2023. "An exact method for binary fortification games," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1026-1039.
    5. Furini, Fabio & Ljubić, Ivana & San Segundo, Pablo & Zhao, Yanlu, 2021. "A branch-and-cut algorithm for the Edge Interdiction Clique Problem," European Journal of Operational Research, Elsevier, vol. 294(1), pages 54-69.
    6. Nicolas Fröhlich & Stefan Ruzika, 2022. "Interdicting facilities in tree networks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 95-118, April.
    7. Ningji Wei & Jose L. Walteros & Foad Mahdavi Pajouh, 2021. "Integer Programming Formulations for Minimum Spanning Tree Interdiction," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1461-1480, October.
    8. Coniglio, Stefano & Furini, Fabio & San Segundo, Pablo, 2021. "A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts," European Journal of Operational Research, Elsevier, vol. 289(2), pages 435-455.
    9. San Segundo, Pablo & Furini, Fabio & Álvarez, David & Pardalos, Panos M., 2023. "CliSAT: A new exact algorithm for hard maximum clique problems," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1008-1025.
    10. Zhong, Haonan & Mahdavi Pajouh, Foad & A. Prokopyev, Oleg, 2023. "On designing networks resilient to clique blockers," European Journal of Operational Research, Elsevier, vol. 307(1), pages 20-32.
    11. San Segundo, Pablo & Coniglio, Stefano & Furini, Fabio & Ljubić, Ivana, 2019. "A new branch-and-bound algorithm for the maximum edge-weighted clique problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 76-90.
    12. Kübra Tanınmış & Markus Sinnl, 2022. "A Branch-and-Cut Algorithm for Submodular Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2634-2657, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.
    2. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.
    3. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    4. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    5. Andrea Baggio & Margarida Carvalho & Andrea Lodi & Andrea Tramontani, 2021. "Multilevel Approaches for the Critical Node Problem," Operations Research, INFORMS, vol. 69(2), pages 486-508, March.
    6. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    7. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    8. Leonardo Lozano & J. Cole Smith, 2017. "A Backward Sampling Framework for Interdiction Problems with Fortification," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 123-139, February.
    9. Fischetti, Matteo & Monaci, Michele & Sinnl, Markus, 2018. "A dynamic reformulation heuristic for Generalized Interdiction Problems," European Journal of Operational Research, Elsevier, vol. 267(1), pages 40-51.
    10. Leitner, Markus & Ljubić, Ivana & Monaci, Michele & Sinnl, Markus & Tanınmış, Kübra, 2023. "An exact method for binary fortification games," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1026-1039.
    11. Kübra Tanınmış & Markus Sinnl, 2022. "A Branch-and-Cut Algorithm for Submodular Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2634-2657, September.
    12. Kosmas, Daniel & Sharkey, Thomas C. & Mitchell, John E. & Maass, Kayse Lee & Martin, Lauren, 2023. "Interdicting restructuring networks with applications in illicit trafficking," European Journal of Operational Research, Elsevier, vol. 308(2), pages 832-851.
    13. Xiang, Yin, 2023. "Minimizing the maximal reliable path with a nodal interdiction model considering resource sharing," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    14. Ramamoorthy, Prasanna & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2018. "Multiple allocation hub interdiction and protection problems: Model formulations and solution approaches," European Journal of Operational Research, Elsevier, vol. 270(1), pages 230-245.
    15. Liu, Shaonan & Wang, Mingzheng & Kong, Nan & Hu, Xiangpei, 2021. "An enhanced branch-and-bound algorithm for bilevel integer linear programming," European Journal of Operational Research, Elsevier, vol. 291(2), pages 661-679.
    16. Laan, Corine M. & van der Mijden, Tom & Barros, Ana Isabel & Boucherie, Richard J. & Monsuur, Herman, 2017. "An interdiction game on a queueing network with multiple intruders," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1069-1080.
    17. Zhou, Yi & Lin, Weibo & Hao, Jin-Kao & Xiao, Mingyu & Jin, Yan, 2022. "An effective branch-and-bound algorithm for the maximum s-bundle problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 27-39.
    18. Zhong, Haonan & Mahdavi Pajouh, Foad & Prokopyev, Oleg A., 2021. "Finding influential groups in networked systems: The most degree-central clique problem," Omega, Elsevier, vol. 101(C).
    19. George Kozanidis & Eftychia Kostarelou, 2023. "An Exact Solution Algorithm for Integer Bilevel Programming with Application in Energy Market Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 573-607, May.
    20. Böttger, T. & Grimm, V. & Kleinert, T. & Schmidt, M., 2022. "The cost of decoupling trade and transport in the European entry-exit gas market with linear physics modeling," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1095-1111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:277:y:2019:i:1:p:112-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.