IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v33y2021i4p1461-1480.html
   My bibliography  Save this article

Integer Programming Formulations for Minimum Spanning Tree Interdiction

Author

Listed:
  • Ningji Wei

    (Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260)

  • Jose L. Walteros

    (Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260)

  • Foad Mahdavi Pajouh

    (School of Business, Stevens Institute of Technology, Hoboken, New Jersey 07030)

Abstract

We consider a two-player interdiction problem staged over a graph where the attacker’s objective is to minimize the cost of removing edges from the graph so that the defender’s objective, that is, the weight of a minimum spanning tree in the residual graph, is increased up to a predefined level r . Standard approaches for graph interdiction frame this type of problems as bilevel formulations, which are commonly solved by replacing the inner problem by its dual to produce a single-level reformulation. In this paper, we study an alternative integer program derived directly from the attacker’s solution space and show that this formulation yields a stronger linear relaxation than the bilevel counterpart. Furthermore, we analyze the convex hull of the feasible solutions of the problem and identify several families of facet-defining inequalities that can be used to strengthen this integer program. We then proceed by introducing a different formulation defined by a set of so-called supervalid inequalities that may exclude feasible solutions, albeit solutions whose objective value is not better than that of an edge cut of minimum cost. We discuss several computational aspects required for an efficient implementation of the proposed approaches. Finally, we perform an extensive set of computational experiments to test the quality of these formulations, analyzing and comparing the benefits of each model, as well as identifying further enhancements. Summary of Contribution : Network interdiction has received significant attention over the last couple of decades, with a notable peak of interest in recent years. This paper provides an interesting balance between the theoretical and computational aspects of solving a challenging network interdiction problem via integer programming. We present several technical developments, including a detailed study of the problem's solution space, multiple formulations, and a polyhedral analysis of the convex hull of feasible solutions. We then analyze the results of an extensive set of computational experiments that were used to validate the effectiveness of the different methods we developed in this paper.

Suggested Citation

  • Ningji Wei & Jose L. Walteros & Foad Mahdavi Pajouh, 2021. "Integer Programming Formulations for Minimum Spanning Tree Interdiction," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1461-1480, October.
  • Handle: RePEc:inm:orijoc:v:33:y:2021:i:4:p:1461-1480
    DOI: 10.1287/ijoc.2020.1018
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2020.1018
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2020.1018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mahdavi Pajouh, Foad & Walteros, Jose L. & Boginski, Vladimir & Pasiliao, Eduardo L., 2015. "Minimum edge blocker dominating set problem," European Journal of Operational Research, Elsevier, vol. 247(1), pages 16-26.
    2. Kelly J. Cormican & David P. Morton & R. Kevin Wood, 1998. "Stochastic Network Interdiction," Operations Research, INFORMS, vol. 46(2), pages 184-197, April.
    3. Furini, Fabio & Ljubić, Ivana & Martin, Sébastien & San Segundo, Pablo, 2019. "The maximum clique interdiction problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 112-127.
    4. Walid Ben-Ameur & Mohamed-Ahmed Mohamed-Sidi & José Neto, 2015. "The $$k$$ k -separator problem: polyhedra, complexity and approximation results," Journal of Combinatorial Optimization, Springer, vol. 29(1), pages 276-307, January.
    5. P. M. Ghare & D. C. Montgomery & W. C. Turner, 1971. "Optimal interdiction policy for a flow network," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 18(1), pages 37-45, March.
    6. Cristina Bazgan & Sonia Toubaline & Daniel Vanderpooten, 2013. "Critical edges/nodes for the minimum spanning tree problem: complexity and approximation," Journal of Combinatorial Optimization, Springer, vol. 26(1), pages 178-189, July.
    7. Richard Wollmer, 1964. "Removing Arcs from a Network," Operations Research, INFORMS, vol. 12(6), pages 934-940, December.
    8. Maarten Oosten & Jeroen H. G. C. Rutten & Frits C. R. Spieksma, 2007. "Disconnecting graphs by removing vertices: a polyhedral approach," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(1), pages 35-60, February.
    9. Marco Di Summa & Andrea Grosso & Marco Locatelli, 2012. "Branch and cut algorithms for detecting critical nodes in undirected graphs," Computational Optimization and Applications, Springer, vol. 53(3), pages 649-680, December.
    10. Matteo Fischetti & Ivana Ljubić & Markus Sinnl, 2017. "Redesigning Benders Decomposition for Large-Scale Facility Location," Management Science, INFORMS, vol. 63(7), pages 2146-2162, July.
    11. Michael Held & Richard M. Karp, 1970. "The Traveling-Salesman Problem and Minimum Spanning Trees," Operations Research, INFORMS, vol. 18(6), pages 1138-1162, December.
    12. Tony H. Grubesic & Timothy C. Matisziw & Alan T. Murray & Diane Snediker, 2008. "Comparative Approaches for Assessing Network Vulnerability," International Regional Science Review, , vol. 31(1), pages 88-112, January.
    13. Alexander Veremyev & Oleg A. Prokopyev & Eduardo L. Pasiliao, 2014. "An integer programming framework for critical elements detection in graphs," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 233-273, July.
    14. Stephen R. Chestnut & Rico Zenklusen, 2017. "Interdicting Structured Combinatorial Optimization Problems with {0, 1}-Objectives," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 144-166, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Ningji & Walteros, Jose L., 2022. "Integer programming methods for solving binary interdiction games," European Journal of Operational Research, Elsevier, vol. 302(2), pages 456-469.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Ningji & Walteros, Jose L., 2022. "Integer programming methods for solving binary interdiction games," European Journal of Operational Research, Elsevier, vol. 302(2), pages 456-469.
    2. Zhong, Haonan & Mahdavi Pajouh, Foad & A. Prokopyev, Oleg, 2023. "On designing networks resilient to clique blockers," European Journal of Operational Research, Elsevier, vol. 307(1), pages 20-32.
    3. Foad Mahdavi Pajouh, 2020. "Minimum cost edge blocker clique problem," Annals of Operations Research, Springer, vol. 294(1), pages 345-376, November.
    4. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    5. Mahdavi Pajouh, Foad & Walteros, Jose L. & Boginski, Vladimir & Pasiliao, Eduardo L., 2015. "Minimum edge blocker dominating set problem," European Journal of Operational Research, Elsevier, vol. 247(1), pages 16-26.
    6. T. N. Dinh & M. T. Thai & H. T. Nguyen, 2014. "Bound and exact methods for assessing link vulnerability in complex networks," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 3-24, July.
    7. Bernardetta Addis & Roberto Aringhieri & Andrea Grosso & Pierre Hosteins, 2016. "Hybrid constructive heuristics for the critical node problem," Annals of Operations Research, Springer, vol. 238(1), pages 637-649, March.
    8. Chen, Wei & Jiang, Manrui & Jiang, Cheng & Zhang, Jun, 2020. "Critical node detection problem for complex network in undirected weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    9. Zhang, Jing & Zhuang, Jun & Behlendorf, Brandon, 2018. "Stochastic shortest path network interdiction with a case study of Arizona–Mexico border," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 62-73.
    10. Bloch, Francis & Chatterjee, Kalyan & Dutta, Bhaskar, 2023. "Attack and interception in networks," Theoretical Economics, Econometric Society, vol. 18(4), November.
    11. Young‐Soo Myung & Hyun‐Joon Kim, 2007. "Network disconnection problems in a centralized network," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(7), pages 710-719, October.
    12. Starita, Stefano & Scaparra, Maria Paola, 2016. "Optimizing dynamic investment decisions for railway systems protection," European Journal of Operational Research, Elsevier, vol. 248(2), pages 543-557.
    13. Bernardetta Addis & Roberto Aringhieri & Andrea Grosso & Pierre Hosteins, 2016. "Hybrid constructive heuristics for the critical node problem," Annals of Operations Research, Springer, vol. 238(1), pages 637-649, March.
    14. Alexander Veremyev & Konstantin Pavlikov & Eduardo L. Pasiliao & My T. Thai & Vladimir Boginski, 2019. "Critical nodes in interdependent networks with deterministic and probabilistic cascading failures," Journal of Global Optimization, Springer, vol. 74(4), pages 803-838, August.
    15. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    16. Kübra Tanınmış & Markus Sinnl, 2022. "A Branch-and-Cut Algorithm for Submodular Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2634-2657, September.
    17. Annunziata Esposito Amideo & Stefano Starita & Maria Paola Scaparra, 2019. "Assessing Protection Strategies for Urban Rail Transit Systems: A Case-Study on the Central London Underground," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    18. Jabarzare, Ziba & Zolfagharinia, Hossein & Najafi, Mehdi, 2020. "Dynamic interdiction networks with applications in illicit supply chains," Omega, Elsevier, vol. 96(C).
    19. Xiang, Yin, 2023. "Minimizing the maximal reliable path with a nodal interdiction model considering resource sharing," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    20. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:33:y:2021:i:4:p:1461-1480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.