IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v288y2021i2p620-633.html
   My bibliography  Save this article

A dynamic multi-objective location-allocation model for search and rescue assets

Author

Listed:
  • Karatas, Mumtaz

Abstract

This paper presents a dynamic multi-objective mixed integer linear programming model to optimize the location and allocation of search and rescue (SAR) boats and helicopters to enhance the performance of maritime SAR missions. Our model incorporates simulated incident scenarios to account for demand uncertainty and allows relocation of vessels seasonally. We define three objectives as responding to incidents within a critical time, generating a balanced workload distribution among vessels of various types, and minimizing costs associated with operations and vessel relocations. Implementing a goal programming approach, we solve the problem for various objective function term weights and compare the performance of each solution with respect to 10 different metrics. Using historical incident datasets for the Aegean Sea, we show that the proposed model and solution approach can significantly improve the SAR performance and provide decision support for planners in developing effective and efficient resource location-allocation schemes.

Suggested Citation

  • Karatas, Mumtaz, 2021. "A dynamic multi-objective location-allocation model for search and rescue assets," European Journal of Operational Research, Elsevier, vol. 288(2), pages 620-633.
  • Handle: RePEc:eee:ejores:v:288:y:2021:i:2:p:620-633
    DOI: 10.1016/j.ejor.2020.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720305439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abi-Zeid, Irene & Frost, John R., 2005. "SARPlan: A decision support system for Canadian Search and Rescue Operations," European Journal of Operational Research, Elsevier, vol. 162(3), pages 630-653, May.
    2. Amin Akbari & Ronald Pelot & H. A. Eiselt, 2018. "A modular capacitated multi-objective model for locating maritime search and rescue vessels," Annals of Operations Research, Springer, vol. 267(1), pages 3-28, August.
    3. Yu Guo & Yanqing Ye & Qingqing Yang & Kewei Yang, 2019. "A Multi-Objective INLP Model of Sustainable Resource Allocation for Long-Range Maritime Search and Rescue," Sustainability, MDPI, vol. 11(3), pages 1-25, February.
    4. George O. Wesolowsky, 1973. "Dynamic Facility Location," Management Science, INFORMS, vol. 19(11), pages 1241-1248, July.
    5. Afshartous, David & Guan, Yongtao & Mehrotra, Anuj, 2009. "US Coast Guard air station location with respect to distress calls: A spatial statistics and optimization based methodology," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1086-1096, August.
    6. Razi, Nasuh & Karatas, Mumtaz, 2016. "A multi-objective model for locating search and rescue boats," European Journal of Operational Research, Elsevier, vol. 254(1), pages 279-293.
    7. Mumtaz Karatas & Nasuh Razi & Murat M. Gunal, 2017. "An ILP and simulation model to optimize search and rescue helicopter operations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1335-1351, November.
    8. Michael R. Wagner & Zinovy Radovilsky, 2012. "Optimizing Boat Resources at the U.S. Coast Guard: Deterministic and Stochastic Models," Operations Research, INFORMS, vol. 60(5), pages 1035-1049, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Strach & Krzysztof Różanowski & Jerzy Pietrucha & Jarosław Lewandowski, 2023. "Analysis of the Functionality of a Mobile Network of Sensors in a Construction Project Supervision System Based on Unmanned Aerial Vehicles," Sustainability, MDPI, vol. 16(1), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mumtaz Karatas & Nasuh Razi & Murat M. Gunal, 2017. "An ILP and simulation model to optimize search and rescue helicopter operations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1335-1351, November.
    2. Karatas, Mumtaz & Yakıcı, Ertan, 2019. "An analysis of p-median location problem: Effects of backup service level and demand assignment policy," European Journal of Operational Research, Elsevier, vol. 272(1), pages 207-218.
    3. Amin Akbari & Ronald Pelot & H. A. Eiselt, 2018. "A modular capacitated multi-objective model for locating maritime search and rescue vessels," Annals of Operations Research, Springer, vol. 267(1), pages 3-28, August.
    4. Karatas, Mumtaz & Sulukan, Egemen & Karacan, Ilknur, 2018. "Assessment of Turkey's energy management performance via a hybrid multi-criteria decision-making methodology," Energy, Elsevier, vol. 153(C), pages 890-912.
    5. Vasileios Kosmas & Michele Acciaro & Maria Besiou, 2022. "Saving migrants’ lives at sea: Improving search and rescue operations," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1872-1889, April.
    6. Sung-Won Cho & Jin-Hyoung Park & Hyun-Ji Park & Seongmin Kim, 2021. "Multi-UAV Coverage Path Planning Based on Hexagonal Grid Decomposition in Maritime Search and Rescue," Mathematics, MDPI, vol. 10(1), pages 1-15, December.
    7. Wei Wang & Li Huang & Xuedong Liang, 2018. "On the Simulation-Based Reliability of Complex Emergency Logistics Networks in Post-Accident Rescues," IJERPH, MDPI, vol. 15(1), pages 1-10, January.
    8. Yu Guo & Yanqing Ye & Qingqing Yang & Kewei Yang, 2019. "A Multi-Objective INLP Model of Sustainable Resource Allocation for Long-Range Maritime Search and Rescue," Sustainability, MDPI, vol. 11(3), pages 1-25, February.
    9. Silva, Allyson & Aloise, Daniel & Coelho, Leandro C. & Rocha, Caroline, 2021. "Heuristics for the dynamic facility location problem with modular capacities," European Journal of Operational Research, Elsevier, vol. 290(2), pages 435-452.
    10. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    11. Maria Albareda-Sambola & Antonio Alonso-Ayuso & Laureano Escudero & Elena Fernández & Yolanda Hinojosa & Celeste Pizarro-Romero, 2010. "A computational comparison of several formulations for the multi-period incremental service facility location problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 62-80, July.
    12. Abdolsalam Ghaderi, 2015. "Heuristic Algorithms for Solving an Integrated Dynamic Center Facility Location - Network Design Model," Networks and Spatial Economics, Springer, vol. 15(1), pages 43-69, March.
    13. Ariane Kayser & Florian Sahling, 2023. "Relocatable modular capacities in risk aware strategic supply network planning under demand uncertainty," Schmalenbach Journal of Business Research, Springer, vol. 75(1), pages 1-35, March.
    14. Russell Halper & S. Raghavan, 2011. "The Mobile Facility Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 413-434, August.
    15. Amir Hossein Sadeghi & Ziyuan Sun & Amirreza Sahebi-Fakhrabad & Hamid Arzani & Robert Handfield, 2023. "A Mixed-Integer Linear Formulation for a Dynamic Modified Stochastic p-Median Problem in a Competitive Supply Chain Network Design," Logistics, MDPI, vol. 7(1), pages 1-24, March.
    16. Karatas, Mumtaz, 2017. "A multi-objective facility location problem in the presence of variable gradual coverage performance and cooperative cover," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1040-1051.
    17. Jones, Dylan & Firouzy, Sina & Labib, Ashraf & Argyriou, Athanasios V., 2022. "Multiple criteria model for allocating new medical robotic devices to treatment centres," European Journal of Operational Research, Elsevier, vol. 297(2), pages 652-664.
    18. Liying Yan & Manel Grifoll & Hongxiang Feng & Pengjun Zheng & Chunliang Zhou, 2022. "Optimization of Urban Distribution Centres: A Multi-Stage Dynamic Location Approach," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    19. Lei, Chao & Lin, Wei-Hua & Miao, Lixin, 2014. "A multicut L-shaped based algorithm to solve a stochastic programming model for the mobile facility routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 699-710.
    20. Eric Delmelle & Jean-Claude Thill & Dominique Peeters & Isabelle Thomas, 2014. "A multi-period capacitated school location problem with modular equipment and closest assignment considerations," Journal of Geographical Systems, Springer, vol. 16(3), pages 263-286, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:288:y:2021:i:2:p:620-633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.