IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v68y2017i11d10.1057_s41274-016-0154-7.html
   My bibliography  Save this article

An ILP and simulation model to optimize search and rescue helicopter operations

Author

Listed:
  • Mumtaz Karatas

    (Turkish Naval Academy)

  • Nasuh Razi

    (Turkish Naval Academy)

  • Murat M. Gunal

    (Turkish Naval Academy)

Abstract

Maritime search and rescue (SAR) operations, conducted for rendering aid to the victims in need of help at sea, play a crucial role in dropping the number of causalities. Therefore, it is of high importance to organize SAR operations properly. In this paper, we compose a hybrid methodology which combines optimization and simulation to allocate SAR helicopters. First, we build an integer linear programming (ILP) model to provide an effective deployment plan and use it as an input to a simulation model which includes constraints that the ILP model cannot tackle. Next, using a rule-based algorithm, we generate alternative solutions and seek better plans that exist in the vicinity of the ILP model solution. We perform our methodology on the historical incident data in the Aegean Sea region. Results show that the hybrid methodology we adopted leads to a more effective utilization of resources than the optimization model alone.

Suggested Citation

  • Mumtaz Karatas & Nasuh Razi & Murat M. Gunal, 2017. "An ILP and simulation model to optimize search and rescue helicopter operations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1335-1351, November.
  • Handle: RePEc:pal:jorsoc:v:68:y:2017:i:11:d:10.1057_s41274-016-0154-7
    DOI: 10.1057/s41274-016-0154-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41274-016-0154-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41274-016-0154-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trevor Hale & Christopher Moberg, 2003. "Location Science Research: A Review," Annals of Operations Research, Springer, vol. 123(1), pages 21-35, October.
    2. A Emre Varol & Murat M Gunal, 2015. "Simulating prevention operations at sea against maritime piracy," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(12), pages 2037-2049, December.
    3. O. Berman & R. C. Larson & C. Parkan, 1987. "The Stochastic Queue p -Median Problem," Transportation Science, INFORMS, vol. 21(3), pages 207-216, August.
    4. Onggo, Bhakti Stephan & Karatas, Mumtaz, 2016. "Test-driven simulation modelling: A case study using agent-based maritime search-operation simulation," European Journal of Operational Research, Elsevier, vol. 254(2), pages 517-531.
    5. Afshartous, David & Guan, Yongtao & Mehrotra, Anuj, 2009. "US Coast Guard air station location with respect to distress calls: A spatial statistics and optimization based methodology," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1086-1096, August.
    6. Ai, Yun-fei & Lu, Jing & Zhang, Li-li, 2015. "The optimization model for the location of maritime emergency supplies reserve bases and the configuration of salvage vessels," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 170-188.
    7. Wex, Felix & Schryen, Guido & Feuerriegel, Stefan & Neumann, Dirk, 2014. "Emergency response in natural disaster management: Allocation and scheduling of rescue units," European Journal of Operational Research, Elsevier, vol. 235(3), pages 697-708.
    8. Ronald Pelot & Amin Akbari & Li Li, 2015. "Vessel Location Modeling for Maritime Search and Rescue," International Series in Operations Research & Management Science, in: H. A. Eiselt & Vladimir Marianov (ed.), Applications of Location Analysis, edition 1, chapter 16, pages 369-402, Springer.
    9. Zied Jemai & Lina Aboueljinane & Evren Sahin, 2012. "Reducing ambulance response time using simulation: The case of Val-de-Marne department emergency medical service," Post-Print hal-01672421, HAL.
    10. R B van der Meer & J Quigley & J E Storbeck, 2005. "Using data envelopment analysis to model the performance of UK coastguard centres," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 889-901, August.
    11. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    12. Abi-Zeid, Irene & Frost, John R., 2005. "SARPlan: A decision support system for Canadian Search and Rescue Operations," European Journal of Operational Research, Elsevier, vol. 162(3), pages 630-653, May.
    13. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    14. Razi, Nasuh & Karatas, Mumtaz, 2016. "A multi-objective model for locating search and rescue boats," European Journal of Operational Research, Elsevier, vol. 254(1), pages 279-293.
    15. Zied Jemai & L. Aboueljinane & E. Sahin, 2013. "A review on simulation models applied to emergency medical service operations," Post-Print hal-01672393, HAL.
    16. Lina Aboueljinane & Evren Sahin & Zied Jemai & Jean Marty, 2014. "A simulation study to improve the performance of an emergency medical service: Application to the French Val-de-Marne department," Post-Print hal-01672390, HAL.
    17. Michael R. Wagner & Zinovy Radovilsky, 2012. "Optimizing Boat Resources at the U.S. Coast Guard: Deterministic and Stochastic Models," Operations Research, INFORMS, vol. 60(5), pages 1035-1049, October.
    18. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    19. R B Van der Meer & J Quigley & J E Storbeck, 2005. "Using regression analysis to model the performance of UK Coastguard centres," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 630-641, June.
    20. G I Mould, 2001. "Assessing systems for offshore emergency evacuation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(4), pages 401-408, April.
    21. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    22. François V. Louveaux & D. Peeters, 1992. "A Dual-Based Procedure for Stochastic Facility Location," Operations Research, INFORMS, vol. 40(3), pages 564-573, June.
    23. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2009. "An optimization approach for ambulance location and the districting of the response segments on highways," European Journal of Operational Research, Elsevier, vol. 195(2), pages 528-542, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    2. Karatas, Mumtaz & Sulukan, Egemen & Karacan, Ilknur, 2018. "Assessment of Turkey's energy management performance via a hybrid multi-criteria decision-making methodology," Energy, Elsevier, vol. 153(C), pages 890-912.
    3. Karatas, Mumtaz, 2021. "A dynamic multi-objective location-allocation model for search and rescue assets," European Journal of Operational Research, Elsevier, vol. 288(2), pages 620-633.
    4. Karatas, Mumtaz & Yakıcı, Ertan, 2019. "An analysis of p-median location problem: Effects of backup service level and demand assignment policy," European Journal of Operational Research, Elsevier, vol. 272(1), pages 207-218.
    5. Sung-Won Cho & Jin-Hyoung Park & Hyun-Ji Park & Seongmin Kim, 2021. "Multi-UAV Coverage Path Planning Based on Hexagonal Grid Decomposition in Maritime Search and Rescue," Mathematics, MDPI, vol. 10(1), pages 1-15, December.
    6. Yu Guo & Yanqing Ye & Qingqing Yang & Kewei Yang, 2019. "A Multi-Objective INLP Model of Sustainable Resource Allocation for Long-Range Maritime Search and Rescue," Sustainability, MDPI, vol. 11(3), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amin Akbari & Ronald Pelot & H. A. Eiselt, 2018. "A modular capacitated multi-objective model for locating maritime search and rescue vessels," Annals of Operations Research, Springer, vol. 267(1), pages 3-28, August.
    2. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    3. Karatas, Mumtaz, 2021. "A dynamic multi-objective location-allocation model for search and rescue assets," European Journal of Operational Research, Elsevier, vol. 288(2), pages 620-633.
    4. Inkyung Sung & Taesik Lee, 2018. "Scenario-based approach for the ambulance location problem with stochastic call arrivals under a dispatching policy," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 153-170, June.
    5. Karatas, Mumtaz & Yakıcı, Ertan, 2019. "An analysis of p-median location problem: Effects of backup service level and demand assignment policy," European Journal of Operational Research, Elsevier, vol. 272(1), pages 207-218.
    6. Carvalho, A.S. & Captivo, M.E. & Marques, I., 2020. "Integrating the ambulance dispatching and relocation problems to maximize system’s preparedness," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1064-1080.
    7. Iannoni, Ana Paula & Chiyoshi, Fernando & Morabito, Reinaldo, 2015. "A spatially distributed queuing model considering dispatching policies with server reservation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 49-66.
    8. Nelas, José & Dias, Joana, 2020. "Optimal Emergency Vehicles Location: An approach considering the hierarchy and substitutability of resources," European Journal of Operational Research, Elsevier, vol. 287(2), pages 583-599.
    9. Zhi-Hai Zhang & Kang Li, 2015. "A novel probabilistic formulation for locating and sizing emergency medical service stations," Annals of Operations Research, Springer, vol. 229(1), pages 813-835, June.
    10. van Barneveld, T.C. & Bhulai, S. & van der Mei, R.D., 2016. "The effect of ambulance relocations on the performance of ambulance service providers," European Journal of Operational Research, Elsevier, vol. 252(1), pages 257-269.
    11. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    12. Soo-Haeng Cho & Hoon Jang & Taesik Lee & John Turner, 2014. "Simultaneous Location of Trauma Centers and Helicopters for Emergency Medical Service Planning," Operations Research, INFORMS, vol. 62(4), pages 751-771, August.
    13. McCormack, Richard & Coates, Graham, 2015. "A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival," European Journal of Operational Research, Elsevier, vol. 247(1), pages 294-309.
    14. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    15. Suriyaphong Nilsang & Chumpol Yuangyai & Chen-Yang Cheng & Udom Janjarassuk, 2019. "Locating an ambulance base by using social media: a case study in Bangkok," Annals of Operations Research, Springer, vol. 283(1), pages 497-516, December.
    16. Sayarshad, Hamid R. & Chow, Joseph Y.J., 2017. "Non-myopic relocation of idle mobility-on-demand vehicles as a dynamic location-allocation-queueing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 60-77.
    17. Caio Vitor Beojone & Regiane Máximo de Souza & Ana Paula Iannoni, 2021. "An Efficient Exact Hypercube Model with Fully Dedicated Servers," Transportation Science, INFORMS, vol. 55(1), pages 222-237, 1-2.
    18. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    19. R B Van der Meer & J Quigley & J E Storbeck, 2005. "Using regression analysis to model the performance of UK Coastguard centres," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 630-641, June.
    20. Iannoni, Ana P. & Morabito, Reinaldo, 2023. "A review on hypercube queuing model's extensions for practical applications," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:68:y:2017:i:11:d:10.1057_s41274-016-0154-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.