IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v281y2020i2p369-387.html
   My bibliography  Save this article

Contingent preference disaggregation model for multiple criteria sorting problem

Author

Listed:
  • Kadziński, Miłosz
  • Ghaderi, Mohammad
  • Dąbrowski, Maciej

Abstract

The conventional preference disaggregation approaches for multiple criteria sorting aim at reconstructing an entire set of assignment examples provided by a Decision Maker (DM) with a single preference model instance. In case the DM’s holistic preference information is not consistent with an assumed model, one needs to accept that some assignment examples are not reproduced. We propose a new approach for handling inconsistency in the context of a threshold-based value-driven sorting procedure. Specifically, we introduce preference disaggregation methods for reconstructing all assignment examples with a set of complementary preference models. The proposed approach builds on the assumption that the importance of particular criteria or, more generally, the shape of marginal value functions and their maximal shares in the comprehensive value are contingent (i.e., dependent) on the performance profile of a given alternative. Therefore, in case of inconsistency, the set of assignment examples is divided into subsets, each of which is reconstructed by a unique model to be used only if certain circumstances are valid. We present three methods for learning a set of contingent models, allowing different degrees of variation in the contingent models along two dimensions: the shape of marginal value functions and interrelations between the models. To apply such a set for classification of non-reference alternatives, we learn a decision tree which makes the application of a given model dependent on the alternatives’ profiles represented by the performances on particular criteria, hence allowing to select an appropriate model among the competing models to evaluate a non-reference alternative. The method’s applicability is demonstrated on a problem of evaluating research units representing different fields of science.

Suggested Citation

  • Kadziński, Miłosz & Ghaderi, Mohammad & Dąbrowski, Maciej, 2020. "Contingent preference disaggregation model for multiple criteria sorting problem," European Journal of Operational Research, Elsevier, vol. 281(2), pages 369-387.
  • Handle: RePEc:eee:ejores:v:281:y:2020:i:2:p:369-387
    DOI: 10.1016/j.ejor.2019.08.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719307131
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.08.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for prioritizing pair-wise elicitation questions with additive multi-attribute value models," Omega, Elsevier, vol. 71(C), pages 27-45.
    2. Dietrich, Franz & List, Christian, 2016. "Reason-Based Choice And Context-Dependence: An Explanatory Framework," Economics and Philosophy, Cambridge University Press, vol. 32(2), pages 175-229, July.
    3. Greco, Salvatore & Mousseau, Vincent & Slowinski, Roman, 2010. "Multiple criteria sorting with a set of additive value functions," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1455-1470, December.
    4. Norese, Maria Franca & Viale, Susanna, 2002. "A multi-profile sorting procedure in the public administration," European Journal of Operational Research, Elsevier, vol. 138(2), pages 365-379, April.
    5. Greco, Salvatore & Matarazzo, Benedetto & Slowinski, Roman, 2001. "Rough sets theory for multicriteria decision analysis," European Journal of Operational Research, Elsevier, vol. 129(1), pages 1-47, February.
    6. Ferretti, Valentina & Pluchinotta, Irene & Tsoukiàs, Alexis, 2019. "Studying the generation of alternatives in public policy making processes," European Journal of Operational Research, Elsevier, vol. 273(1), pages 353-363.
    7. repec:hal:pseose:halshs-01249514 is not listed on IDEAS
    8. Franz Dietrich & Christian List, 2013. "Where do preferences come from?," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(3), pages 613-637, August.
    9. Greco, Salvatore & Mousseau, Vincent & Słowiński, Roman, 2014. "Robust ordinal regression for value functions handling interacting criteria," European Journal of Operational Research, Elsevier, vol. 239(3), pages 711-730.
    10. repec:dau:papers:123456789/2944 is not listed on IDEAS
    11. Liu, Jiapeng & Liao, Xiuwu & Kadziński, Miłosz & Słowiński, Roman, 2019. "Preference disaggregation within the regularization framework for sorting problems with multiple potentially non-monotonic criteria," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1071-1089.
    12. Mousseau, Vincent & Figueira, Jose & Dias, Luis & Gomes da Silva, Carlos & Climaco, Joao, 2003. "Resolving inconsistencies among constraints on the parameters of an MCDA model," European Journal of Operational Research, Elsevier, vol. 147(1), pages 72-93, May.
    13. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.
    14. Murat Köksalan & Vincent Mousseau & Özgür Özpeynirci & Selin Bilgin Özpeynirci, 2009. "A new outranking‐based approach for assigning alternatives to ordered classes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(1), pages 74-85, February.
    15. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    16. Doumpos, Michael & Zopounidis, Constantin & Galariotis, Emilios, 2014. "Inferring robust decision models in multicriteria classification problems: An experimental analysis," European Journal of Operational Research, Elsevier, vol. 236(2), pages 601-611.
    17. Almeida-Dias, J. & Figueira, J.R. & Roy, B., 2012. "A multiple criteria sorting method where each category is characterized by several reference actions: The Electre Tri-nC method," European Journal of Operational Research, Elsevier, vol. 217(3), pages 567-579.
    18. Greco, Salvatore & Mousseau, Vincent & Slowinski, Roman, 2008. "Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions," European Journal of Operational Research, Elsevier, vol. 191(2), pages 416-436, December.
    19. Dias, Luis C. & Antunes, Carlos Henggeler & Dantas, Guilherme & de Castro, Nivalde & Zamboni, Lucca, 2018. "A multi-criteria approach to sort and rank policies based on Delphi qualitative assessments and ELECTRE TRI: The case of smart grids in Brazil," Omega, Elsevier, vol. 76(C), pages 100-111.
    20. Kadziński, Miłosz & Tervonen, Tommi & Rui Figueira, José, 2015. "Robust multi-criteria sorting with the outranking preference model and characteristic profiles," Omega, Elsevier, vol. 55(C), pages 126-140.
    21. Pedro Bordalo & Nicola Gennaioli & Andrei Shleifer, 2015. "Salience Theory of Judicial Decisions," The Journal of Legal Studies, University of Chicago Press, vol. 44(S1), pages 7-33.
    22. Bettman, James R & Luce, Mary Frances & Payne, John W, 1998. "Constructive Consumer Choice Processes," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 25(3), pages 187-217, December.
    23. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for selecting pair-wise elicitation questions in multiple criteria choice problems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 693-707.
    24. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman, 2016. "Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model," Omega, Elsevier, vol. 63(C), pages 154-169.
    25. Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman, 2016. "Multiple Criteria Hierarchy Process for ELECTRE Tri methods," European Journal of Operational Research, Elsevier, vol. 252(1), pages 191-203.
    26. Kadziński, Miłosz & Ciomek, Krzysztof & Słowiński, Roman, 2015. "Modeling assignment-based pairwise comparisons within integrated framework for value-driven multiple criteria sorting," European Journal of Operational Research, Elsevier, vol. 241(3), pages 830-841.
    27. Michael Doumpos & Constantin Zopounidis & Emilios C. C Galariotis, 2014. "Inferring robust decision models in multicriteria classification problems: An experimental analysis," Post-Print hal-00961323, HAL.
    28. Pelissari, Renata & Oliveira, Maria Célia & Ben Amor, Sarah & Abackerli, Alvaro José, 2019. "A new FlowSort-based method to deal with information imperfections in sorting decision-making problems," European Journal of Operational Research, Elsevier, vol. 276(1), pages 235-246.
    29. Joost M.E. Pennings & Philip Garcia, 2009. "The informational content of the shape of utility functions: financial strategic behavior," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 30(2), pages 83-90.
    30. Ghaderi, Mohammad & Ruiz, Francisco & Agell, Núria, 2017. "A linear programming approach for learning non-monotonic additive value functions in multiple criteria decision aiding," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1073-1084.
    31. Franz Dietrich & Christian List, 2013. "Where do preferences come from? A summary," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00978022, HAL.
    32. Doumpos, Michalis & Figueira, José Rui, 2019. "A multicriteria outranking approach for modeling corporate credit ratings: An application of the Electre Tri-nC method," Omega, Elsevier, vol. 82(C), pages 166-180.
    33. Amos Tversky & Itamar Simonson, 1993. "Context-Dependent Preferences," Management Science, INFORMS, vol. 39(10), pages 1179-1189, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2022. "Bayesian ordinal regression for multiple criteria choice and ranking," European Journal of Operational Research, Elsevier, vol. 299(2), pages 600-620.
    2. Khaled Belahcène & Vincent Mousseau & Wassila Ouerdane & Marc Pirlot & Olivier Sobrie, 2023. "Multiple criteria sorting models and methods. Part II: theoretical results and general issues," 4OR, Springer, vol. 21(2), pages 181-204, June.
    3. Bagherzadeh, Mehdi & Ghaderi, Mohammad & Fernandez, Anne-Sophie, 2022. "Coopetition for innovation - the more, the better? An empirical study based on preference disaggregation analysis," European Journal of Operational Research, Elsevier, vol. 297(2), pages 695-708.
    4. Marco Cinelli & Matteo Spada & Wansub Kim & Yiwen Zhang & Peter Burgherr, 2021. "MCDA Index Tool: an interactive software to develop indices and rankings," Environment Systems and Decisions, Springer, vol. 41(1), pages 82-109, March.
    5. Leyva López, Juan Carlos & Solano Noriega, Jesús Jaime & Figueira, José Rui & Liu, Jun & Gastélum Chavira, Diego Alonso, 2021. "Non-dominated sorting genetic-based algorithm for exploiting a large-sized fuzzy outranking relation," European Journal of Operational Research, Elsevier, vol. 293(2), pages 615-631.
    6. Jiapeng Liu & Miłosz Kadziński & Xiuwu Liao, 2023. "Modeling Contingent Decision Behavior: A Bayesian Nonparametric Preference-Learning Approach," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 764-785, July.
    7. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2023. "Probabilistic ordinal regression methods for multiple criteria sorting admitting certain and uncertain preferences," European Journal of Operational Research, Elsevier, vol. 311(2), pages 596-616.
    8. Podinovski, Vladislav V., 2020. "Maximum likelihood solutions for multicriterial choice problems," European Journal of Operational Research, Elsevier, vol. 286(1), pages 299-308.
    9. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.
    10. Marco Corazza & Giovanni Fasano & Stefania Funari & Riccardo Gusso, 2021. "MURAME parameter setting for creditworthiness evaluation: data-driven optimization," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 295-339, June.
    11. Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu & Mao, Xiaoxin & Wang, Yao, 2020. "A preference learning framework for multiple criteria sorting with diverse additive value models and valued assignment examples," European Journal of Operational Research, Elsevier, vol. 286(3), pages 963-985.
    12. Kadziński, Miłosz & Ciomek, Krzysztof, 2021. "Active learning strategies for interactive elicitation of assignment examples for threshold-based multiple criteria sorting," European Journal of Operational Research, Elsevier, vol. 293(2), pages 658-680.
    13. Ghaderi, Mohammad, 2022. "Public health interventions in the face of pandemics: Network structure, social distancing, and heterogeneity," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1016-1031.
    14. Ghaderi, Mohammad & Kadziński, Miłosz, 2021. "Incorporating uncovered structural patterns in value functions construction," Omega, Elsevier, vol. 99(C).
    15. Tlili, Ali & Belahcène, Khaled & Khaled, Oumaima & Mousseau, Vincent & Ouerdane, Wassila, 2022. "Learning non-compensatory sorting models using efficient SAT/MaxSAT formulations," European Journal of Operational Research, Elsevier, vol. 298(3), pages 979-1006.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khaled Belahcène & Vincent Mousseau & Wassila Ouerdane & Marc Pirlot & Olivier Sobrie, 2023. "Multiple criteria sorting models and methods—Part I: survey of the literature," 4OR, Springer, vol. 21(1), pages 1-46, March.
    2. Kadziński, Miłosz & Ciomek, Krzysztof, 2021. "Active learning strategies for interactive elicitation of assignment examples for threshold-based multiple criteria sorting," European Journal of Operational Research, Elsevier, vol. 293(2), pages 658-680.
    3. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2021. "Robust stochastic sorting with interacting criteria hierarchically structured," European Journal of Operational Research, Elsevier, vol. 292(2), pages 735-754.
    4. Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu & Mao, Xiaoxin & Wang, Yao, 2020. "A preference learning framework for multiple criteria sorting with diverse additive value models and valued assignment examples," European Journal of Operational Research, Elsevier, vol. 286(3), pages 963-985.
    5. Kadziński, Miłosz & Wójcik, Michał & Ciomek, Krzysztof, 2022. "Review and experimental comparison of ranking and choice procedures for constructing a univocal recommendation in a preference disaggregation setting," Omega, Elsevier, vol. 113(C).
    6. Liu, Jiapeng & Liao, Xiuwu & Kadziński, Miłosz & Słowiński, Roman, 2019. "Preference disaggregation within the regularization framework for sorting problems with multiple potentially non-monotonic criteria," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1071-1089.
    7. Kadziński, Miłosz & Cinelli, Marco & Ciomek, Krzysztof & Coles, Stuart R. & Nadagouda, Mallikarjuna N. & Varma, Rajender S. & Kirwan, Kerry, 2018. "Co-constructive development of a green chemistry-based model for the assessment of nanoparticles synthesis," European Journal of Operational Research, Elsevier, vol. 264(2), pages 472-490.
    8. Ghaderi, Mohammad & Kadziński, Miłosz, 2021. "Incorporating uncovered structural patterns in value functions construction," Omega, Elsevier, vol. 99(C).
    9. Sarah Ben Amor & Fateh Belaid & Ramzi Benkraiem & Boumediene Ramdani & Khaled Guesmi, 2023. "Multi-criteria classification, sorting, and clustering: a bibliometric review and research agenda," Annals of Operations Research, Springer, vol. 325(2), pages 771-793, June.
    10. Tlili, Ali & Belahcène, Khaled & Khaled, Oumaima & Mousseau, Vincent & Ouerdane, Wassila, 2022. "Learning non-compensatory sorting models using efficient SAT/MaxSAT formulations," European Journal of Operational Research, Elsevier, vol. 298(3), pages 979-1006.
    11. Vincent Mousseau & Özgür Özpeynirci & Selin Özpeynirci, 2018. "Inverse multiple criteria sorting problem," Annals of Operations Research, Springer, vol. 267(1), pages 379-412, August.
    12. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2023. "Probabilistic ordinal regression methods for multiple criteria sorting admitting certain and uncertain preferences," European Journal of Operational Research, Elsevier, vol. 311(2), pages 596-616.
    13. Salvatore Corrente & Michael Doumpos & Salvatore Greco & Roman Słowiński & Constantin Zopounidis, 2017. "Multiple criteria hierarchy process for sorting problems based on ordinal regression with additive value functions," Annals of Operations Research, Springer, vol. 251(1), pages 117-139, April.
    14. Zhen Zhang & Zhuolin Li, 2023. "Consensus-based TOPSIS-Sort-B for multi-criteria sorting in the context of group decision-making," Annals of Operations Research, Springer, vol. 325(2), pages 911-938, June.
    15. Sobrie, Olivier & Gillis, Nicolas & Mousseau, Vincent & Pirlot, Marc, 2018. "UTA-poly and UTA-splines: Additive value functions with polynomial marginals," European Journal of Operational Research, Elsevier, vol. 264(2), pages 405-418.
    16. Wang, Liang & Zhang, Zi-Xin & Ishizaka, Alessio & Wang, Ying-Ming & Martínez, Luis, 2023. "TODIMSort: A TODIM based method for sorting problems," Omega, Elsevier, vol. 115(C).
    17. Fernández, Eduardo & Figueira, José Rui & Navarro, Jorge & Solares, Efrain, 2023. "A generalized approach to ordinal classification based on the comparison of actions with either limiting or characteristic profiles," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1309-1322.
    18. Miłosz Kadziński & Magdalena Martyn, 2021. "Enriched preference modeling and robustness analysis for the ELECTRE Tri-B method," Annals of Operations Research, Springer, vol. 306(1), pages 173-207, November.
    19. Wu, Xingli & Liao, Huchang, 2023. "Value-driven preference disaggregation analysis for uncertain preference information," Omega, Elsevier, vol. 115(C).
    20. Ciomek, Krzysztof & Ferretti, Valentina & Kadzinski, Milosz, 2018. "Predictive analytics and disused railways requalification: insights from a Post Factum Analysis perspective," LSE Research Online Documents on Economics 85922, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:281:y:2020:i:2:p:369-387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.