Integer programming models for mid-term production planning for high-tech low-volume supply chains
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2018.02.049
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hubert Missbauer & Reha Uzsoy, 2011. "Optimization Models of Production Planning Problems," International Series in Operations Research & Management Science, in: Karl G. Kempf & Pınar Keskinocak & Reha Uzsoy (ed.), Planning Production and Inventories in the Extended Enterprise, chapter 0, pages 437-507, Springer.
- Spitter, J. M. & Hurkens, C. A. J. & de Kok, A. G. & Lenstra, J. K. & Negenman, E. G., 2005. "Linear programming models with planned lead times for supply chain operations planning," European Journal of Operational Research, Elsevier, vol. 163(3), pages 706-720, June.
- Stefan Voß & David L. Woodruff, 2006. "Introduction to Computational Optimization Models for Production Planning in a Supply Chain," Springer Books, Springer, edition 0, number 978-3-540-29879-3, January.
- Naber, Anulark & Kolisch, Rainer, 2014. "MIP models for resource-constrained project scheduling with flexible resource profiles," European Journal of Operational Research, Elsevier, vol. 239(2), pages 335-348.
- Stadtler, Hartmut, 2005. "Supply chain management and advanced planning--basics, overview and challenges," European Journal of Operational Research, Elsevier, vol. 163(3), pages 575-588, June.
- Kolisch, Rainer, 2000. "Integration of assembly and fabrication for make-to-order production," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 335, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
- Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
- Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
- Kolisch, R., 2000. "Integration of assembly and fabrication for make-to-order production," International Journal of Production Economics, Elsevier, vol. 68(3), pages 287-306, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bing Feng & Kaiyang Sun & Min Chen & Tao Gao, 2020. "The Impact of Core Technological Capabilities of High-Tech Industry on Sustainable Competitive Advantage," Sustainability, MDPI, vol. 12(7), pages 1-15, April.
- Eduardo Gutiérrez González & Olga Vladimirovna Panteleeva, 2020. "A model for planning and optimizing an engineering company production," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 669-699, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liang Tang & Zhihong Jin & Xuwei Qin & Ke Jing, 2019. "Supply chain scheduling in a collaborative manufacturing mode: model construction and algorithm design," Annals of Operations Research, Springer, vol. 275(2), pages 685-714, April.
- Jeunet, Jully & Bou Orm, Mayassa, 2020. "Optimizing temporary work and overtime in the Time Cost Quality Trade-off Problem," European Journal of Operational Research, Elsevier, vol. 284(2), pages 743-761.
- Sung, Chang Sup & Juhn, Jaeho, 2009. "Makespan minimization for a 2-stage assembly scheduling problem subject to component available time constraint," International Journal of Production Economics, Elsevier, vol. 119(2), pages 392-401, June.
- Mick Van Den Eeckhout & Broos Maenhout & Mario Vanhoucke, 2020. "Mode generation rules to define activity flexibility for the integrated project staffing problem with discrete time/resource trade-offs," Annals of Operations Research, Springer, vol. 292(1), pages 133-160, September.
- Tritschler, Martin & Naber, Anulark & Kolisch, Rainer, 2017. "A hybrid metaheuristic for resource-constrained project scheduling with flexible resource profiles," European Journal of Operational Research, Elsevier, vol. 262(1), pages 262-273.
- Li, Haitao & Womer, Keith, 2012. "Optimizing the supply chain configuration for make-to-order manufacturing," European Journal of Operational Research, Elsevier, vol. 221(1), pages 118-128.
- Schneeweiss, Christoph & Zimmer, Kirstin, 2004. "Hierarchical coordination mechanisms within the supply chain," European Journal of Operational Research, Elsevier, vol. 153(3), pages 687-703, March.
- Roland Braune & Karl F. Doerner, 2017. "Real-world flexible resource profile scheduling with multiple criteria: learning scalarization functions for MIP and heuristic approaches," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(8), pages 952-972, August.
- Kellenbrink, Carolin & Helber, Stefan, 2015.
"Scheduling resource-constrained projects with a flexible project structure,"
European Journal of Operational Research, Elsevier, vol. 246(2), pages 379-391.
- Kellenbrink, Carolin & Helber, Stefan, 2013. "Scheduling resource-constrained projects with a flexible project structure," Hannover Economic Papers (HEP) dp-511, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Zorzini, M. & Corti, D. & Pozzetti, A., 2008. "Due date (DD) quotation and capacity planning in make-to-order companies: Results from an empirical analysis," International Journal of Production Economics, Elsevier, vol. 112(2), pages 919-933, April.
- Sawik, Tadeusz, 2009. "Coordinated supply chain scheduling," International Journal of Production Economics, Elsevier, vol. 120(2), pages 437-451, August.
- Pamela C. Nolz, 2021. "Optimizing construction schedules and material deliveries in city logistics: a case study from the building industry," Flexible Services and Manufacturing Journal, Springer, vol. 33(3), pages 846-878, September.
- Gopalswamy, Karthick & Uzsoy, Reha, 2021. "Conic programming models for production planning with clearing functions: Formulations and duality," European Journal of Operational Research, Elsevier, vol. 292(3), pages 953-966.
- Staeblein, Thomas & Aoki, Katsuki, 2015. "Planning and scheduling in the automotive industry: A comparison of industrial practice at German and Japanese makers," International Journal of Production Economics, Elsevier, vol. 162(C), pages 258-272.
- Lee, Ik Sun & Sung, C.S., 2008. "Minimizing due date related measures for a single machine scheduling problem with outsourcing allowed," European Journal of Operational Research, Elsevier, vol. 186(3), pages 931-952, May.
- Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
- Sawik, Tadeusz, 2007. "A lexicographic approach to bi-objective scheduling of single-period orders in make-to-order manufacturing," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1060-1075, August.
- Estévez-Fernández, Arantza, 2012.
"A game theoretical approach to sharing penalties and rewards in projects,"
European Journal of Operational Research, Elsevier, vol. 216(3), pages 647-657.
- Estevez Fernandez, M.A., 2008. "A Game Theoretical Approach to Sharing Penalties and Rewards in Projects," Discussion Paper 2008-84, Tilburg University, Center for Economic Research.
- Arantza Estévez-Fernández, 2009. "A Game Theoretical Approach to Sharing Penalties and Rewards in Projects," Tinbergen Institute Discussion Papers 09-090/1, Tinbergen Institute.
- Pokharel, Shaligram, 2008. "A two objective model for decision making in a supply chain," International Journal of Production Economics, Elsevier, vol. 111(2), pages 378-388, February.
- Servranckx, Tom & Vanhoucke, Mario, 2019. "Strategies for project scheduling with alternative subgraphs under uncertainty: similar and dissimilar sets of schedules," European Journal of Operational Research, Elsevier, vol. 279(1), pages 38-53.
More about this item
Keywords
Production; Integer programming; Branch and bound;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:269:y:2018:i:3:p:984-997. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.